DOI QR코드

DOI QR Code

Development of Reduced Graphene Oxide/Sr0.98Y0.08TiO3-δ Anode for Methane Fuels in Solid Oxide Fuel Cells

메탄연료사용을 위한 고체산화물 연료전지용 Reduced Graphene Oxide/Sr0.98Y0.08TiO3-δ 연료극 개발

  • Hyung Soon Kim (Haeyang Energy Co) ;
  • Jun Ho Kim (Department of Chemical Engineering, Chonnam National University) ;
  • Su In Mo (Department of Chemical Engineering, Chonnam National University) ;
  • Gwang Seon Park (Department of Chemical Engineering, Chonnam National University) ;
  • Jeong Woo Yun (Department of Chemical Engineering, Chonnam National University)
  • Received : 2022.10.31
  • Accepted : 2022.12.01
  • Published : 2023.05.01

Abstract

Solid oxide fuel cell has received more attention recently due to the fuel flexibility via internal reforming. Commonly used Ni/YSZ anode, however, can be easily deactivated by carbon coking in hydrocarbon fuels. The carbon deposition problem can minimize by developing alternative perovskite anode. This study is focused on improving conductivity and catalytic activity of the perovskite anode by introducing rGO (reduced graphene oxide). Sr0.92Y0.08TiO3(SYT) anode with perovskite structure was synthesized with 1wt% of rGO. The presence of rGO during anode fabricating process and cell operation is confirmed through XPS and Raman analysis. The maximum power density of rGO/SYT anode improved to 3 times in H2 and 6 times in CH4 comparing to that of SYT anode due to the high electrical conductivity and good catalytic activity for CH4.

고온 운전이 가능한 고체산화물 연료전지의 최대의 장점은 내부개질을 통한 연료의 다양성에 있다. 하지만 기존의 Ni/SYZ전극은 탄소침적에 대한 단점을 가지고 있고, 이를 해결하기 위해 페로브스카이트 구조의 연료극 개발이 진행되었다. 본 연구에서는 페로브스카이트 대체 연료극의 낮은 전기전도도 및 촉매활성을 향상시키기 위해 rGO(reduced graphene oxide)를 Sr0.92Y0.08TiO3(SYT)와 혼합하여 연료극에 대한 성능 평가를 진행하였다. Ni/YSZ(yttria stabilized zirconia)와 SYT에 1wt%rGO를 첨가하여 연료극을 합성하였다. 고온 산화조건에서 전극 제조 후 rGO의 유무 확인은 XPS 및 라만 분석을 통해 확인하였다. rGO/SYT 연료극은 rGO 대비 H2에서 3배, CH4에서 6배의 매우 큰 성능 향상을 보여주었다.

Keywords

Acknowledgement

이 연구는 2021년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구임('20012555').

References

  1. Singhal, S. C., "Solid Oxide Fuel Cells for Stationary, Mobile, and Military Applications," Solid State Ionics, 152, 405-410(2002).  https://doi.org/10.1016/S0167-2738(02)00349-1
  2. Mogensen, M and Kammer, K., "Conversion of Hydrocarbons in Solid Oxide Fuel Cells," Ann. Rev. Mater. Res., 33, 321-331(2003).  https://doi.org/10.1146/annurev.matsci.33.022802.092713
  3. Zhan, Z. and Barnett, S. A., "An Octane-fueled Solid Oxide Fuel Cell," Science, 308(5723), 844-847(2005).  https://doi.org/10.1126/science.1109213
  4. Steele, B. C. H., "Running on Natural Gas," Nature, 400(6745), 619-621(1999).  https://doi.org/10.1038/23144
  5. Dicks, A. L., "Hydrogen Generation from Natural Gas for the Fuel Cell Systems of Tomorrow," J. Power Sources., 61(1-2), 113-124(1996).  https://doi.org/10.1016/S0378-7753(96)02347-6
  6. Iwata, T., "Characterization of Ni-ysz Anode Degradation for Substrate-type Solid Oxide Fuel Cells," J. Electrochem. Soc., 143(5), 1521(1996). 
  7. Koh, J. H., Yoo, Y. S., Park, J. W. and Lim, H. C., "Carbon Deposition and Cell Performance of Ni-YSZ Anode Support SOFC with Methane Fuel," Solid State Ionics, 149(3-4), 157-166(2002).  https://doi.org/10.1016/S0167-2738(02)00243-6
  8. Cheng, Z. and Meilin, L., "Characterization of Sulfur Poisoning of Ni-YSZ Anodes for Solid Oxide Fuel Cells Using in situ Raman Microspectroscopy," Solid State Ionics, 178(13-14) 925-935(2007).  https://doi.org/10.1016/j.ssi.2007.04.004
  9. Yun, J. W., Yoon, S. P., Han, J., Park, S., Kim, H. S. and Nam, S. W., "Ceria Coatings Effect on H2S Poisoning of Ni/YSZ Anodes for Solid Oxide Fuel Cells," J. Electrochem. Soc., 157(12), B1825(2010). 
  10. Richter, J., Holtappels, P., Graule, T., Nakamura, T. and Gauckler, L. J., "Materials Design for Perovskite SOFC Cathodes," Monatshefte Chem., 140(9), 985-999(2009).  https://doi.org/10.1007/s00706-009-0153-3
  11. Anderson, H. U., "Review of p-type Doped Perovskite Materials for SOFC and Other Applications," Solid State Ionics, 52(1-3), 33-41(1992).  https://doi.org/10.1016/0167-2738(92)90089-8
  12. Sunarso, J., Baumann, S., Serra, J. M., Meulenberg, W. A., Liu, S., Lin, Y. S. and Da Costa, J. D., "Mixed Ionic-electronic Conducting (MIEC) Ceramic-based Membranes for Oxygen Separation," J. Membrane Sci., 320(1-2), 13-41(2008).  https://doi.org/10.1016/j.memsci.2008.03.074
  13. Kim, H. S., Yoon, S. P., Yun, J. W., Song, S. A., Jang, S. C., Nam, S. W. and Shul, Y. G., "Sr0.92Y0.08TiO3-δ/Sm0.2Ce0.8O2-δ Anode for Solid Oxide Fuel Cells Running on Methane," Int. J. Hydrogen Energ., 37(21), 16130-16139(2012).  https://doi.org/10.1016/j.ijhydene.2012.08.030
  14. Park, E. K., Lee, S. and Yun, J. W., "Characteristics of Sr0.92Y0.08Ti1-y NiyO3-δ Anode and Ni-infiltrated Sr0.92Y0.08TiO3-δ Anode Using CH4 Fuel in Solid Oxide Fuel Cells," Appl. Surf. Sci., 429, 171-179(2018).  https://doi.org/10.1016/j.apsusc.2017.07.284
  15. Lee, J. M. and Yun, J. W., "Characteristics of Sr0.92,/sub>Y0.08Ti0.7Fe0.3O3-δ Anode Running on Humidified Methane Fuel in Solid Oxide Fuel Cells," Ceramics International, 42(7), 8698-8705(2016).  https://doi.org/10.1016/j.ceramint.2016.02.104
  16. Jee, Y., Karimaghaloo, A., Andrade, A. M., Moon, H., Li, Y., Han, J. W., Ji, S., Ishihara, H., Su, P.-C., Cha, S. W., Tung, V. C. and Lee, M. H., "Graphene-based Oxygen Reduction Electrodes for Low Temperature Solid Oxide Fuel Cells," Fuel Cells, 17(3), 344-352(2017).  https://doi.org/10.1002/fuce.201600169
  17. Gomez-Gomez, A., Ramirez, C., Llorente, J., Garcia, A., Moreno, P., Reveron, H., Chevalier, J., Osendi, M. I. Belmonte, M. and Miranzo, P., "Improved Crack Resistance and Thermal Conductivity of Cubic Zirconia Containing Graphene Nanoplatelets," J. Eur. Ceram. Soc., 40(4), 1557-1565(2020).  https://doi.org/10.1016/j.jeurceramsoc.2019.12.016
  18. Glukharev, A., Glumov, O., Temnikova, M., Shamshirgar, A. S., Kurapova, O., Hussainova, I. and Konakov, V., "YSZ-rGO Composite Ceramics by Spark Plasma Sintering: The Relation Between Thermal Evolution of Conductivity, Microstructure and Phase Stability," Electrochim. Acta, 367, 137533(2021). 
  19. Al-Gaashani, R., Najjar, A., Zakaria, Y., Mansour, S. and Atieh, M. A., "XPS and Structural Studies of High Quality Graphene Oxide and Reduced Graphene Oxide Prepared by Different Chemical Oxidation Methods," Ceramics International, 45(11), 14439-14448(2019).  https://doi.org/10.1016/j.ceramint.2019.04.165
  20. Garcia-Basabe, Y., Peixoto, G. F., Grasseschi, D., Romani, E. C., Vicentin, F. C., Villegas, C. E. P., Rocha, A. R. and Larrude, D. G., "Phase Transition and Electronic Structure Investigation of MoS2-reduced Graphene Oxide Nanocomposite Decorated with Au Nanoparticles," Nanotechnology, 30(47), 475707(2019).