DOI QR코드

DOI QR Code

Fe-Nanoparticle Amalgamation Using Lagenaria siceraria Leaf Aqueous Extract with Focus on Dye Removal and Antibacterial Efficacy

  • Kirti (Department of Chemical Engineering, Motilal Nehru National Institute of Technology Allahabad) ;
  • Suantak Kamsonlian (Department of Chemical Engineering, Motilal Nehru National Institute of Technology Allahabad) ;
  • Vishnu Agarwal (Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad) ;
  • Ankur Gaur (Department of Chemical Engineering, Motilal Nehru National Institute of Technology Allahabad) ;
  • Jin-Won Park (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • Received : 2022.08.16
  • Accepted : 2022.11.15
  • Published : 2023.05.01

Abstract

Iron nanoparticles (Fe-NPs) were synthesized employing Lagenaria siceraria (LS) leaf aqueous extract as a reducing and capping medium to remove methylene blue (MB) dye and have antibacterial properties against G-negative (Escherichia coli) and G-positive bacteria (Staphylococcus aureus). The formation of LS-Fe-NPs (Lagenaria-siceraria-iron-nanoparticles) was confirmed by a change in color from pale yellow to dark brown. Characterization techniques, such as particle size analysis (PSA), transmission electron microscopy (TEM) and scanning electron microscopy (SEM), were employed to prove nano spherical particles of size range between 80-100 nm. Phytochemicals and the presence of iron in LS-Fe-NPs nanoparticles were proved by UV-visible spectrophotometry. Further, Fourier transform infrared spectroscopy (FTIR) analysis results confirmed the existence of bioactive molecules in the plants. The magnetic property was analyzed using a vibrating sample magnetometer (VSM), which displayed that the synthesized nanoparticles were superparamagnetic and exhibiting a saturation magnetization of 12.5 emu/g. Synthesized magnetic nanoparticles were used in methylene blue (MB) dye removal through adsorption. About 83% of 100 mg/L MB dye was removed within 120 min at pH 6 with a maximum adsorption capacity of 246.8 mg/g. Antibacterial efficacy of LS-Fe-NPs was screened against G-negative (Escherichia coli) and G-positive bacteria (Staphylococcus aureus), respectively, and found that LS-Fe-NPs were effective against Staphylococcus aureus.

Keywords

Acknowledgement

The authors express their gratitude to the Central Facility and Chemical Engineering Department, MNNIT Allahabad, India for providing the facilities to carry out the research work and analysis of the samples.

References

  1. Boretti, A. and Rosa, L., "Reassessing the Projections of the World Water Development Report," Npj Clean Water, 2(1), 15(2019). 
  2. Gutierrez, A. M., Dziubla, T. D. and Hilt, J. Z., "Recent Advances on Iron Oxide Magnetic Nanoparticles as Sorbents of Organic Pollutants in Water and Wastewater Treatment," Rev. on Env. Health, 32(1-2), 111-117(2017).  https://doi.org/10.1515/reveh-2016-0063
  3. Agarwal, M. and Singh, K., "Heavy Metal Removal from Wastewater Using Various Adsorbents: A Review," J. Water. Reuse and Desal., 7(4), 387-419(2017).  https://doi.org/10.2166/wrd.2016.104
  4. Mehdipour, S., Vatanpour, V. and Kariminia, H. R., "Influence of Ion Interaction on Lead Removal by a Polyamide Nanofiltration Membrane," Desal., 362, 84-92(2015).  https://doi.org/10.1016/j.desal.2015.01.030
  5. Rawat, S., Samreen, K., Nayak, A.K., Singh, J. and Koduru, J. R., "Fabrication of Iron Nanoparticles Using Parthenium: A Combinatorial Eco-innovative Approach to Eradicate Crystal Violet Dye and Phosphate from the Aqueous Environment," Env. Nanotech. Mon. & Manag., 15, 100426(2021). 
  6. Yang, X., Chung, E., Johnston, I., Ren, G. and Cheong, Y. K. "Exploitation of Antimicrobial Nanoparticles and Their Applications in Biomedical Engineering," App. Sci., 11(10), 4520 (2021). 
  7. Kouhbanani, M., Beheshtkhoo, N., Amani, A., Taghizadeh, S., Beigi, V. and Bazmandeh, A., "Green Synthesis of Iron Oxide Nanoparticles Using Artemisia Vulgaris Leaf Extract and Their Application as a Heterogeneous Fenton-like Catalyst for the Degradation of Methyl Orange," Mat. Res. Exp., 5(11), 115013(2018). 
  8. Ali, A., Shah. T., Ullah, R., Zhou, P., Guo, M. and Ovais, M., "Review on Recent Progress in Magnetic Nanoparticles: Synthesis, Characterization, and Diverse Applications," Fron. Chem., 9, 2296-2646(2021). 
  9. Kianfar, E., Magnetic Nanoparticles in Targeted Drug Delivery: a Review," J. Superconduct. Novel Mag., 34(7), 1709-1735(2021).  https://doi.org/10.1007/s10948-021-05932-9
  10. Wang, Y., Zou, L., Qiang, Z., Jiang, J., Zhu, Z. and Ren, J., "Enhancing Targeted Cancer Treatment by Combining Hyperthermia and Radiotherapy Using Mn-Zn Ferrite Magnetic Nanoparticles," ACS Biomat. Sci. Eng., 6(6), 3550-3562(2020).  https://doi.org/10.1021/acsbiomaterials.0c00287
  11. Qamer, S., Romli, M. H., Che-Hamzah, F., Misni, N., Joseph, N. M. S. and Al-Haj, N. A., Systematic Review on Biosynthesis of Silver Nanoparticles and Antibacterial Activities: Application and Theoretical Perspectives," Molec., 26(16), 50-57(2021). 
  12. Lee, N. and Hyeon, T., "Designed Synthesis of Uniformly Sized Iron Oxide Nanoparticles for Efficient Magnetic Resonance Imaging Contrast Agents," Chem. Soc. Rev., 41(7), 2575-2589(2012).  https://doi.org/10.1039/C1CS15248C
  13. Mehnaz, R., Rabbi, M., Ara, T., Elaissari, A., Ahmad, H. and Hossain, Md., "Vancomycin Conjugated Iron Oxide Nanoparticles for Magnetic Targeting and Efficient Capture of Gram-positive and Gram-negative Bacteria," RSC Adv., 11, 36319-36328(2021).  https://doi.org/10.1039/D1RA04390K
  14. Hilger, I., Hiergeist, R., Hergt, R., Winnefeld, K., Schubert, H. and Kaiser, W. A., "Thermal Ablation of Tumors Using Magnetic Nanoparticles," Investigative Radiology, 37(10), 580-586(2002).  https://doi.org/10.1097/00004424-200210000-00008
  15. Rodrigues, C. R., Garcia, L. R., Baptista, P. V. and Fernandes, A. R., "Gene Therapy in Cancer Treatment: Why Go Nano?," Pharmaceutics, 12(3), 233(2020). 
  16. Nile, S. H., Baskar, V., Selvaraj, D., Nile, A., Xiao, J. and Kai, G., "Nanotechnologies in Food Science: Applications, Recent Trends, and Future Perspectives," Nano-Micro Lett., 12(1), 45(2020). 
  17. Saili, K., Rachana, Y., Shuana, M. and Balaprasad, A., "A Review on Green Synthesis and Applications of Iron Oxide Nanoparticles," J. Nanoscie. Nanotech., 21(12), 6168-6182(2021).  https://doi.org/10.1166/jnn.2021.19538
  18. Pradeep, T. and Anshup., "Noble Metal Nanoparticles for Water Purification: A Critical Review," Thin Solid Films, 517(24), 6441-6478(2009).  https://doi.org/10.1016/j.tsf.2009.03.195
  19. Sanchez-Lopez, E., Gomes, D., Esteruelas, G., Bonilla, L., Lopez-Machado, A. L. and Galindo, R., "Metal-Based Nanoparticles as Antimicrobial Agents: An Overview," Nanomat., 10(2), 1-39(2020). 
  20. Gudkov, S. V., Burmistrov, D. E., Serov, D. A., Rebezov, M. B., Semenova, A. A. and Lisitsyn, A. B., "Metal-Based Nanoparticles as Antimicrobial Agents: An Overview," Antibiot., 10(7), 1-23(2021). 
  21. Hyunhee, S. and Yul, R., "Mixed Contaminants Removal Efficiency Using Bio-FeS Nanoparticles," J. Nanosci. Nanotech., 18(2), 1127-1130(2018).  https://doi.org/10.1166/jnn.2018.14871
  22. Urnukhsaikhan, E., Bold, B. E., Gunbileg, A., Sukhbaatar, N. and Mishig-Ochir, T., "Antibacterial Activity and Characteristics of Silver Nanoparticles Biosynthesized from Carduus Crispus," Sci. Rep., 11(1), 1-12(2021).  https://doi.org/10.1038/s41598-020-79139-8
  23. Abbas, A. and Razieh, M., "Adsorptive Removal of Congo Red, a Carcinogenic Textile Dye, from Aqueous Solutions by Maghemite Nanoparticles," J. Haz. Mat., 174(1-3), 398-403(2010).  https://doi.org/10.1016/j.jhazmat.2009.09.066
  24. Machado, S., Pinto, S. L., Grosso, J. P., Nouws, H. P., Albergaria, J. T. and Delerue-Matos, C., "Green Production of Zero-valent Iron Nanoparticles Using Tree Leaf Extracts," Sci. Tot. Env., 445, 1-8(2013). 
  25. Saif, S., Tahir, A. and Chen, Y., "Green Synthesis of Iron Nanoparticles and Their Environmental Applications and Implications," Nanomat., 6(11), 1-26(2016).  https://doi.org/10.3390/nano6110209
  26. Kaur, K. and Sidhu, A. K., "Green Synthesis: An Eco-friendly Route for the Synthesis of Iron Oxide Nanoparticles," Fron. in Nanotech., 3, 2673-3013(2021). 
  27. Devatha, C. P., Thalla, A. K. and Katte, S. Y., "Green Synthesis of Iron Nanoparticles Using Different Leaf Extracts for Treatment of Domestic Waste Water," J.Clean. Prod., 139, 1425-1435(2016).  https://doi.org/10.1016/j.jclepro.2016.09.019
  28. Devatha, C. P., Thalla, A. K. and Katte, S. Y., "Green Synthesis of Iron Nanoparticles Using Different Leaf Extracts for Treatment of Domestic Waste Water," J. Clean. Prod., 139, 1425-1435(2016).  https://doi.org/10.1016/j.jclepro.2016.09.019
  29. Kanagasubbulakshmi, S. and Kadirvelu, K., "Green Synthesis of Iron Oxide Nanoparticles Using Lagenaria Siceraria and Evaluation of Its Antimicrobial Activity," Def. Life Sci., 2(4), 422(2017). 
  30. Wang, T., Lin, J., Chen, Z., Megharaj, M. and Naidu, R., "Green Synthesized Iron Nanoparticles by Green Tea and Eucalyptus Leaves Extracts Used For Removal of Nitrate in Aqueous Solution," J. Clean. Prod., 83, 413-419(2014).  https://doi.org/10.1016/j.jclepro.2014.07.006
  31. Hongtao, G., Miaomiao, K., Hui, S., Tian, F., Dongmei, D. Fenghua, L. and Chongdian, S., J. Nanoscie and Nanotech., 18(2), 1034-1042(2018).  https://doi.org/10.1166/jnn.2018.13972
  32. Lebogang, K. S., Tshepiso, M., Samuel, A. O. and Indra, B., "Green Synthesis of Iron Nanoparticles Using Moringa Oleifera Extracts and Their Applications: Removal of Nitrate from Water and Antibacterial Activity Against Escherichia coli," Molec. Liq., 256, 296-304(2018).  https://doi.org/10.1016/j.molliq.2017.11.093
  33. Zhang, Q., Yang, X. and Guan, J., "Applications of Magnetic Nanomaterials in Heterogeneous Catalysis," ACS App. Nano Mat., 2(8), 4681-4697(2019).  https://doi.org/10.1021/acsanm.9b00976
  34. El-Shahaw, M. S., Hamza, A., Bahaffi, S. O., Al-Sibaai, A. A. and Abduljabbar, T. N., "Retention Profile and Selective Separation of Trace Concentrations of Phenols from Water onto Iron (III) Physically Loaded Polyurethane Foam Solid Sorbent: Kinetics and Thermodynamic Study Food Chem," Chromatog. & Sep. Tech., 134, 2268-2275(2012). 
  35. Karpagavinayagam, P. and Vedhi, C., "Green Synthesis of Iron Oxide Nanoparticles Using Avicennia Marina Flower Extract," Vacuum, 160, 286-292(2018).  https://doi.org/10.1016/j.vacuum.2018.11.043
  36. Bibi, I., Nazar, N., Iqbal, M., Kamal, S., Nawaz, H. and Nouren, S., "Green and Eco-friendly Synthesis of Cobalt-oxide Nanoparticle: Characterization and Photo-catalytic Activity," Adv. Powder Tech., 28(10), 2035-2043(2017).  https://doi.org/10.1016/j.apt.2017.05.008
  37. Somchaidee, P. and Tedsree, K., "Green Synthesis of High Dispersion and Narrow Size Distribution of Zero-valent Iron Nanoparticles Using Guava Leaf (Psidium guajava L) Extract," Adv. in Nat. Sci: Nanosci. and Nanotech., 9(3), 035006(2018). 
  38. Brajesh, K., Kumari, S., Luis, C. and Alexis, D., "Biogenic Synthesis of Iron Oxide Nanoparticles for 2-arylbenzimidazole Fabrication," J. Saudi. Chem. Soc., 18(4), 364-369(2014).  https://doi.org/10.1016/j.jscs.2014.01.003
  39. Shu, H. Y., Chang, M. C., Yu, H. H. and Chen, W. H., "Reduction of An Azo Dye Acid Black 24 Solution Using Synthesized Nanoscale Zerovalent Iron Particles," J. Coll. Interf. Sci., 314(1), 89-97(2007).  https://doi.org/10.1016/j.jcis.2007.04.071
  40. Guo-Xiang, R., Zhi-Xiang, L., Zhong-Jun, P., Shuang-Long, Z. and Peng, D., "Immobilization of Cellulase onto Amino and Graphene Oxide Functionalized Magnetic Fe2O3/Fe3O4@SiO2 Nanocomposites," J. Nanoscie. Nanotech., 21(9), 4749-4757 (2021).  https://doi.org/10.1166/jnn.2021.19127
  41. Harish, K., Kumar, G. A., Ankur, G., Jin-Won, P. and Sanjeev, M., "Facile Synthesis of SiO2/CMC/Ag Hybrids Derived from Waste Biomass (Sugarcane Bagasse) Having Special Medical Application," J. Nanoscie. Nanotech., 20(10), 6413-6421(2020). https://doi.org/10.1166/jnn.2020.18509