DOI QR코드

DOI QR Code

Machinability investigation of gray cast iron in turning with ceramics and CBN tools: Modeling and optimization using desirability function approach

  • Boutheyna Gasmi (Department of Mechanical Engineering, Mechanics and Structure Laboratory (LMS), University 8 Mai 1945) ;
  • Boutheyna Gasmi (Department of Mechanical Engineering, Mechanics and Structure Laboratory (LMS), University 8 Mai 1945) ;
  • Septi Boucherit (Department of Mechanical Engineering, Mechanics and Structure Laboratory (LMS), University 8 Mai 1945) ;
  • Salim Chihaoui (Department of Mechanical Engineering, Mechanics and Structure Laboratory (LMS), University 8 Mai 1945) ;
  • Tarek Mabrouki (Applied Mechanics and Engineering Laboratory, University of Tunis El Manar, ENIT)
  • Received : 2022.12.20
  • Accepted : 2023.03.06
  • Published : 2023.04.10

Abstract

The purpose of this research is to assess the performance of CBN and ceramic tools during the dry turning of gray cast iron EN GJL-350. During the turning operation, the variable machining parameters are cutting speed, feed rate, depth of cut and type of the cutting material. This contribution consists of two sections, the first one deals with the performance evaluation of four materials in terms of evolution of flank wear, surface roughness (2D and 3D) and cutting forces. The focus of the second section is on statistical analysis, followed by modeling and optimization. The experiments are conducted according to the Taguchi design L32 and based on ANOVA approach to quantify the impact of input factors on the output parameters, namely, the surface roughness (Ra), the cutting force (Fz), the cutting power (Pc), specific cutting energy (Ecs). The RSM method was used to create prediction models of several technical factors (Ra, Fz, Pc, Ecs and MRR). Subsequently, the desirability function approach was used to achieve a multi-objective optimization that encompasses the output parameters simultaneously. The aim is to obtain optimal cutting regimes, following several cases of optimization often encountered in industry. The results found show that the CBN tool is the most efficient cutting material compared to the three ceramics. The optimal combination for the first case where the importance is the same for the different outputs is Vc=660 m/min, f=0.116 mm/rev, ap=0.232 mm and the material CBN. The optimization results have been verified by carrying out confirmation tests.

Keywords

Acknowledgement

The present research was undertaken by the "Metal Cutting Research Group" of the (LMS) Laboratory of the 8 May 1945-Guelma University, Algeria.

References

  1. Abdelnasser, A.S., Barakat, A., Elsanabary, S. and Nassef, A. (2020), "Relative performance of coate the relativec and CBN inserts in hard turning of Ti6Al4V alloy", Port-Said Eng. Res. J., 24(2), 114-121. http://doi.org/10.21608/pserj.2020.32842.1044. 
  2. Aslan, A. (2020), "Optimization and analysis of process parameters for flank wear, cutting forces and vibration in turning of AISI 5140: A comprehensive study", Measure., 163, 107959. http://doi.org/10.1016/j.measurement.2020.107959. 
  3. Badaluddin, N.A., Zamri, W.F.H.W., Din, M.F.M., Mohamed, I.F. and Ghani, J.A. (2018), "Coatings of cutting tools and their contribution to improve mechanical properties: A brief review", Int. J. Appl. Eng. Res., 13(14), 11653-11664. 
  4. Chihaoui, S., Yallese, M.A., Belhadi, S., Belbah, A., Safi, K. and Haddad, A. (2021), "Coated CBN cutting tool performance in green turning of gray cast iron EN-GJL-250: Modeling and optimization", Int. J. Adv. Manuf. Technol., 113, 3643-3665. http://doi.org/10.1007/s00170-021-06820-1. 
  5. Das, A., Kamal, M., Das, S.R., Patel, S.K., Panda, A., Rafighi, M. and Biswal, B.B. (2022), "Comparative assessment between AlTiN and AlTiSiN coated carbide tools towards machinability improvement of AISI D6 steel in dry hard turning", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 236(6), 3174-3197. http://doi.org/10.1177/09544062211037373. 
  6. Dash, L., Padhan, S., Das, A. and Das, S.R. (2021), "Machinability investigation and sustainability assessment in hard turning of AISI D3 steel with coated carbide tool under nanofluid minimum quantity lubrication-cooling condition", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 235(22), 6496-6528. http://doi.org/10.1177/0954406221993844. 
  7. El-Mahalawy, M., Samuel, M., Fouda, N. and El-Bahloul, S. (2021), "Investigating the effect of wire electrical discharge machining factors for ductile cast iron (ASTM A536)", Int. J. Indus. Eng. Prod. Res., 32(2), 1. 
  8. Gabaldo, S., Diniz, A.E., Andrade, C.L.F. and Guesser, W.L. (2010), "Performance of carbide and ceramic tools in the milling of compact graphite iron-CGI", J. Brazil. Soc. Mech. Sci. Eng., 32, 511-517. http://doi.org/10.1590/s1678-58782010000500011. 
  9. Grzesik, W. and Zak, K. (2016), "High performance machining of nodular cast iron using coated carbide and ceramic tools", J. Manuf. Technol., 41(3), 13-19. http://doi.org/10.1016/j.ijmachtools.2008.10.003. 
  10. Herwan, J., Misaka, T., Kano, S., Sawada, H., Furukawa, Y. and Ryabov, O. (2022), "Improving sustainability index of grey cast iron finish cutting through high-speed dry turning and cutting parameters optimization using Taguchi-Based Bayesian method", Int. J. Precis. Eng. Manuf.-Green Technol., 1-17. http://doi.org/10.1007/s40684-022-00457-5. 
  11. Jumare, A.I., Abou-El-Hossein, K., Abdulkadir, L.N. and Liman, M.M. (2019), "Predictive modeling and multiobjective optimization of diamond turning process of single-crystal silicon using RSM and desirability function approach", Int. J. Adv. Manuf. Technol., 103, 4205-4220. http://doi.org/10.1007/s00170-019-03816-w. 
  12. Kalyon, A., Gunay, M. and O zyurek, D. (2018), "Application of grey relational analysis based on Taguchi method for optimizing machining parameters in hard turning of high chrome cast iron", Adv. Manuf., 6(4), 419-429. http://doi.org/10.1007/s40436-018-0231-z. 
  13. Keblouti, O., Boulanouar, L., Azizi, M.W. and Bouziane, A. (2019), "Multi response optimization of surface roughness in hard turning with coated carbide tool based on cutting parameters and tool vibration", Struct. Eng. Mech., 70(4), 395-405. https://doi.org/10.12989/sem.2019.70.4.395. 
  14. Keblouti, O., Boulanouar, L., Azizi, M.W. and Yallese, M.A. (2017), "Effects of coating material and cutting parameters on the surface roughness and cutting forces in dry turning of AISI 52100 steel", Struct. Eng. Mech, 61(4), 519-526. http://doi.org/10.12989/sem.2017.61.4.519. 
  15. Kouahla, I., Yallese, M.A., Belhadi, S., Safi, K. and Nouioua, M. (2022), "Tool vibration, surface roughness, cutting power, and productivity assessment using RSM and GRA approach during machining of Inconel 718 with PVD-coated carbide tool", Int. J. Adv. Manuf. Technol., 122(3-4), 1835-1856. http://doi.org/10.1007/s00170-022-09988-2 
  16. Kumar, S., Grover, S. and Walia, R.S. (2022), "Residual stresses and surface topography investigation of AISI D3 tool steel under of ultrasonic vibration assisted wire-EDM", Int. J. Interact. Des. Manuf. (IJIDeM), 16(4), 1417-1438. http://doi.org/10.1007/s12008-022-01034-5. 
  17. Labidi, A., Tebassi, H., Belhadi, S., Khettabi, R. and Yallese, M.A. (2018), "Cutting conditions modeling and optimization in hard turning using RSM, ANN and desirability function", J. Fail. Anal. Preven., 18, 1017-1033. http://doi.org/10.1007/s11668-018-0501-x 
  18. Laouissi, A., Nouioua, M., Yallese, M.A., Abderazek, H., Maouche, H. and Bouhalais, M.L. (2021), "Machinability study and ANN-MOALO-based multi-response optimization during Eco-Friendly machining of EN-GJL-250 cast iron", Int. J. Adv. Manuf. Tech., 117(3), 1179-1192. http://doi.org/10.1007/s00170-021-07759-z. 
  19. Laouissi, A., Yallese, M.A., Belbah, A., Belhadi, S. and Haddad, A. (2019), "Investigation, modeling, and optimization of cutting parameters in turning of gray cast iron using coated and uncoated silicon nitride ceramic tools. Based on ANN, RSM, and GA optimization", Int. J. Adv. Manuf. Technol., 101(1-4), 523-548. http://doi.org/10.1007/s00170-018-2931-8. 
  20. Laouissi, A., Yallese, M.A., Belbah, A., Khellaf, A. and Haddad, A. (2019), "Comparative study of the performance of coated and uncoated silicon nitride (Si3N4) ceramics when machining EN-GJL-250 cast iron using the RSM method and 2D and 3D roughness functional parameters", J. Brazil. Soc. Mech. Sci. Eng., 41, 1-23. http://doi.org/10.1007/s40430-019-1708-9. 
  21. Luan, X., Zhang, S. and Cai, G. (2016), "Optimal cutting parameters to reduce power consumption in face milling of a cast iron alloy for environmental sustainability", Sustain. Des. Manuf., 135-148. http://doi.org/10.1007/978-3-319-32098-4_12. 
  22. Maity, S.R., Chatterjee, P. and Chakraborty, S. (2012), "Cutting tool material selection using grey complex proportional assessment method", Mater. Des. (1980-2015), 36, 372-378. http://doi.org/10.1016/j.matdes.2011.11.044. 
  23. Mohamed, O.A., Masood, S.H. and Bhowmik, J.L. (2016), "Mathematical modeling and FDM process parameters optimization using response surface methodology based on Q-optimal design", Appl. Math. Model., 40(23-24), 10052-10073. http://doi.org/10.1016/j.apm.2016.06.055. 
  24. Mohanraj, T. and Kumar, M.D. (2019), "The process parameter optimization for grey cast iron in turning process using response surface methodology", Int. J. Mech. Prod. Eng. Res. Develop., 9, 997-1006. 
  25. Mohanraj, T. and Tamilvanan, A. (2022), "Decision support system for tool condition monitoring in milling process using artificial neural network", J. Eng. Res., 10(4B), 1. http://doi.org/10.36909/jer.9621 
  26. Mohanraj, T., Radhika, N., Aswin Nanda, S., Vignesh, V., Jayaraman, B., Ratana Selvan, K.R. and Admassu, Y. (2022), "Parameter optimization and machining performance of inconel 625 with nanoparticles dispersed in biolubricant", Adv. Mater. Sci. Eng., 2022, Article ID 7210265. http://doi.org/10.1155/2022/7210265 
  27. Moreno, J.R.S., Ribeiro, A.A. and de Souza Goncalves, J.F. (2021), "Comparative analysis on the wear performance of new and reconditioned ceramic cutting tools when machining nodular cast iron GGG-60, with lubrication of two types of fluids", J. Mater. Eng. Perform., 30, 248-257. http://doi.org/10.1007/s11665-020-05319-2. 
  28. Nouioua, M., Laouissi, A., Brahami, R., Blaoui, M.M., Hammoudi, A. and Yallese, M.A. (2022), "Evaluation of: MOSSA, MOALO, MOVO and MOGWO algorithms in gree,n machining to enhance the turning performances of X210Cr12 steel", Int. J. Adv. Manuf. Tech., 120(3), 2135-2150. http://doi.org/10.21203/rs.3.rs-1110052/v1. 
  29. Padilla-Atondo, J.M., Limon-Romero, J., Perez-Sanchez, A., Tlapa, D., Baez-Lopez, Y., Puente, C. and Ontiveros, S. (2021), "The impact of hydrogen on a stationary gasoline-based engine through multi-response optimization: A desirability function approach", Sustain., 13(3), 1385. http://doi.org/10.3390/su13031385. 
  30. Paturi, U.M.R., Yash, A., Palakurthy, S.T. and Reddy, N.S. (2022), "Modeling and optimization of machining parameters for minimizing surface roughness and tool wear during AISI 52100 steel dry turning", Mater. Today: Proc., 50, 1164-1172. http://doi.org/10.1016/j.matpr.2021.08.047 
  31. Ravi, A.M. and Murigendrappa, S.M. (2021), "Comparative study of carbide tools in turning of high-chrome white cast iron using hard turning methods", IOP Conf. Ser.: Mater. Sci. Eng., 1065(1), 012032. http://doi.org/10.1088/1757-899x/1065/1/012032. 
  32. Rumiantseva, Y., Melnichuk, I., Garashchenko, V., Zaporozhets, O., Turkevich, V. and Bushlya, V. (2020), "Influence of CBN content, Al2O3 and Si3N4 additives and their morphology on microstructure, properties, and wear of PCBN with NbN binder", Ceram. Int., 46(14), 22230-22238. http://doi.org/10.1016/j.ceramint.2020.05.300. 
  33. Safi, K., Yallese, M.A., Belhadi, S., Mabrouki, T. andChihaoui, S. (2022), "Parametric study and multi-criteria optimization during turning of X210Cr12 steel using the desirability function and hybrid Taguchi-WASPAS method", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 236(15), 8401-8420. http://doi.org/10.1177/09544062221086171. 
  34. Schultheiss, F., Bushlya, V., Lenrick, F., Johansson, D., Kristiansson, S. and Stahl, J.E. (2018), "Tool wear mechanisms of pcBN tooling during high-speed machining of gray cast iron", Procedia CIRP, 77, 606-609. http://doi.org/10.1016/j.procir.2018.08.201. 
  35. Shankar, S. (2020), "Tool wear prediction in hard turning of EN8 steel using cutting force and surface roughness with artificial neural network", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 234(1), 329-342. http://doi.org/10.1177/0954406219873932. 
  36. Sharma, V.K., Rana, M., Singh, T., Singh, A.K. and Chattopadhyay, K. (2021), "Multi-response optimization of process parameters using desirability function analysis during machining of EN31 steel under different machining environments", Mater. Today: Proc., 44, 3121-3126. http://doi.org/10.1016/j.matpr.2021.02.809. 
  37. Yallese, M.A., Boulanouar, L. and Chaoui, K. (2004), "Usinage de l'acier 100Cr6 trempe par un outil en nitrure de bore cubique", Mecaniq. Industr., 5(4), 355-368. http://doi.org/10.1051/meca:2004036. 
  38. Yallese, M.A., Chaoui, K., Zeghib, N., Boulanouar, L. and Rigal, J.F. (2009), "Hard machining of hardened bearing steel using cubic boron nitride tool", J. Mater. Proc. Technol., 209(2), 1092-1104. http://doi.org/10.1016/j.jmatprotec.2008.03.014. 
  39. Yamamoto, K., Abdoos, M., Paiva, J.M., Stolf, P., Beake, B., Rawal, S., ... & Veldhuis, S. (2018), "Cutting performance of low stress thick TiAlN PVD coatings during machining of compacted graphite cast iron (CGI)", Coating., 8(1), 38. http://doi.org/10.3390/coatings8010038. 
  40. Yilmaz, N.G., Goktan, R.M. and Kibici, Y. (2011), "An investigation of the petrographic and physico-mechanical properties of true granites influencing diamond tool wear performance, and development of a new wear index", Wear, 271(5-6), 960-969. http://doi.org/10.1016/j.wear.2011.04.007. 
  41. Yin, G., Shen, J., Wu, Z., Wu, X. and Jiang, F. (2022), "Experimental Investigation on the Machinability of PCBN chamfered tool in dry turning of gray cast iron", Process., 10(8), 1547. http://doi.org/10.3390/pr10081547. 
  42. Zerti, A., Yallese, M.A., Meddour, I., Belhadi, S., Haddad, A. and Mabrouki, T. (2019), "Modeling and multi-objective optimization for minimizing surface roughness, cutting force, and power, and maximizing productivity for tempered stainless steel AISI 420 in turning operations", Int. J. Adv. Manuf. Technol., 102, 135-157. http://doi.org/10.1007/s00170-018-2984-8. 
  43. Zerti, O., Yallese, M., Zerti, A., Belhadi, S. and Girardin, F. (2018), "Simultaneous improvement of surface quality and productivity using grey relational analysis-based Taguchi design for turning couple (AISI D3 steel/mixed ceramic tool (Al2O3+ TiC))", Int. J. Indus. Eng. Comput., 9(2), 173-194. http://doi.org/10.5267/j.ijiec.2017.7.001.