DOI QR코드

DOI QR Code

Closed-form and numerical solution of the static and dynamic analysis of coupled shear walls by the continuous method and the modified transfer matrix method

  • Mao C. Pinto (Department of Civil Engineering, National University of Engineering)
  • Received : 2022.12.27
  • Accepted : 2023.03.06
  • Published : 2023.04.10

Abstract

This study investigates the static and dynamic structural analysis of symmetrical and asymmetrical coupled shear walls using the continuous and modified transfer matrix methods by idealizing the coupled shear wall as a three-field CTB-type replacement beam. The coupled shear wall is modeled as a continuous structure consisting of the parallel coupling of a Timoshenko beam in tension (with axial extensibility in the shear walls) and a shear beam (replacing the beam coupling effect between the shear walls). The variational method using the Hamilton principle is used to obtain the coupled differential equations and the boundary conditions associated with the model. Using the continuous method, closed-form analytical solutions to the differential equation for the coupled shear wall with uniform properties along the height are derived and a numerical solution using the modified transfer matrix is proposed to overcome the difficulty of coupled shear walls with non-uniform properties along height. The computational advantage of the modified transfer matrix method compared to the classical method is shown. The results of the numerical examples and the parametric analysis show that the proposed analytical and numerical model and method is accurate, reliable and involves reduced processing time for generalized static and dynamic structural analysis of coupled shear walls at a preliminary stage and can used as a verification method in the final stage of the project.

Keywords

Acknowledgement

The research described in this document was possible thanks to the support of Jesus Christ. The author wishes to thank Zoe Juliette Pinto for her continued support in this research project.

References

  1. Aksogan, O., Turkozer, C.D., Emsen, E. and Resatoglu, R. (2014), "Dynamic analysis of non-planar coupled shear walls with stiffening beams using Continuous Connection Method", Thin Wall. Struct., 82, 95-104. http://doi.org/10.1016/j.tws.2014.03.018.
  2. Aksogan, O., Arslan, H.M. and Choo, B.S. (2003), "Forced vibration analysis of stiffened coupled shear walls using continuous connection method", Eng. Struct., 25(4), 499-506. https://doi.org/10.1016/S0141-0296(02)00192-X.
  3. Aksogan, O., Bikce, M., Emsen, E. and Arslan, H.M. (2007), "A simplified dynamic analysis of multi-bay stiffened coupled shear walls", Adv. Eng. Softw., 38(8-9), 552-560. https://doi.org/10.1016/j.advengsoft.2006.08.019.
  4. Biot, M. (1933), "Theory of elastic systems vibrating under transient impulse with an application to earthquake-proof buildings", Proc. Nat. Acad. Sci. USA, 2(19), 262-268. https://doi.org/10.1073/pnas.19.2.262.
  5. Bozdogan, K.B. (2009), "An approximate method for static and dynamic analyses of symmetric wall-frame buildings", Struct. Des. Tall Spec. Build., 18(3), 279-290. https://doi.org/10.1002/tal.409.
  6. Bozdogan, K.B. (2012), "Differential quadrature method for free vibration analysis of coupled shear walls", Struct. Eng. Mech., 41(1), 67-81. https://doi.org/10.12989/sem.2012.41.1.067.
  7. Bozdogan, K.B. and Osturk D. (2012), "Vibration analysis of asymmetric shear wall-frame structures using the transfer matrix method", Trans. Civil Eng., 36(1), 1-12.
  8. Bozdogan, K.B. and Osturk D. (2016), "A method for dynamic analysis of frame-hinged shear wall structures", Earthq. Struct., 11(1), 45-61. https://doi.org/10.12989/eas.2016.11.1.045.
  9. Bozdogan, K.B. and Ozturk, D. (2008), "A method for static and dynamic analyses of stiffened multi-bay coupled shear walls", Struct. Eng. Mech., 28(4), 479-489. https://doi.org/10.12989/sem.2008.28.4.479.
  10. Bozdogan, K.B. and Ozturk, D. (2010), "An approximate method for lateral stability analysis of wall-frame buildings including shear deformations of walls", Sadhana, 35(3), 241-253. https://doi.org/10.1007/s12046-010-0008-y.
  11. Bozdogan, K.B., Ozturk, D. and Nuhoglu, A. (2009), "An approximate method for static and dynamic analyses of multi-bay coupled shear walls", Struct. Des. Tall Spec. Build., 18(1), 1-12. https://doi.org/10.1002/tal.390.
  12. Capsoni, A. and Faridani, M.H. (2015), "Novel continuum models for coupled shear wall analysis", Struct. Des. Tall Spec. Build., 25(10), 444-467. https://doi.org/10.1002/tal.1267.
  13. Capuani, D., Merli, M. and Savoia, M. (1994), "An equivalent continuum approach for coupled shear walls", Eng. Struct., 16(1), 63-73. https://doi.org/10.1016/0141-0296(94)90105-8.
  14. Chesnais, C., Boutin, C. and Hans, S. (2011), Structural Dynamics and Generalized Continua, Springer, Berlin Heidelberg, Berlin, Heidelberg.
  15. Chitty, L. (1947), "On the cantilever composed of a number of parallel beams interconnected by cross bars", London, Edinburgh Dublin Philos. Mag. J. Sci., 38, 685-699. https://doi.org/10.1080/14786444708521646.
  16. Chitty, L. and Wan, W.Y. (1948), "Tall building structures under wind load", Proceedings of the 7th International Congress for Applied Mechanics, 22, 254-268.
  17. Emsen, E. and Aksogan, O. (2012), "Static analysis of non-planar coupled shear walls with stepwise changes in geometrical properties using continuous connection method", Thin Wall. Struct., 56, 21-32. https://doi.org/10.1016/j.tws.2012.03.006.
  18. Feng, Y., Wu J., Chong, X. and Meng S. (2018), "Seismic lateral displacement analysis and design of an earthquake-resilient dual wall-frame system", Eng. Struct., 177, 85-102. https://doi.org/10.1016/j.engstruct.2018.09.059.
  19. Franco, C.G., Chesnais, C., Semblat, J.F., Giry, C. and Desprez, C. (2022), "Finite element formulation of a homogenized beam for reticulated structure dynamics", Comput. Struct., 261, 106729. https://doi.org/10.1016/j.compstruc.2021.106729.
  20. Hikmet, H.C. (2009), "A method for static and dynamic analyses of stiffened multi-bay coupled shear walls", Struct. Eng. Mech., 31(3), 367-369. https://doi.org/10.12989/sem.2009.31.3.367.
  21. Hu, H.S., Wang, R.T., Guo, Z.X. and Shahrooz, B.M. (2020), "A generalized method for estimating drifts and drift components of tall buildings under lateral loading", Struct. Des. Tall Spec. Build., 29(2), e1688. https://doi.org/10.1002/tal.1688.
  22. Jacobsen, L. (1986), "Motion of a soil subjected to a simple harmonic ground motion vibration", Bull. Seismol. Soc. Am., 3(20), 160-195. https://doi.org/10.1785/BSSA0200030160.
  23. Ji, X., Cheng, X. and Xu, M. (2018), "Coupled axial tension-shear behavior of reinforced concrete walls", Eng. Struct., 167, 132-142. https://doi.org/10.1016/j.engstruct.2018.04.015.
  24. Laier, J.E. (2021), "An improved continuous medium technique for three-dimensional analysis of tall building structures", Struct. Eng. Mech., 80(1), 73-81. https://doi.org/10.12989/sem.2021.80.1.073.
  25. Li, Y., Jin, T., Meng, S., Yu, H. and Zhao, Y. (2022), "Evaluation of seismic response of coupled wall structure with self-centering and viscous damping composite coupling beams", Struct., 45, 214-228. https://doi.org/10.1016/j.istruc.2022.09.022.
  26. Li, Y., Xu, J., Ma, K. and Yu, H. (2022), "Seismic behavior of coupled wall structure with steel and viscous damping composite coupling beams", J. Build. Eng., 52, 104510. https://doi.org/10.1016/j.jobe.2022.104510.
  27. Miranda, E. (1999), "Approximate lateral drift demands in multistory buildings subjected to earthquakes", J. Struct. Eng., 124(4), 417-425. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:4(417).
  28. Rajasekaran, S. (2007), "Symbolic computation and differential quadrature method-A boon to engineering analysis", Struct. Eng. Mech., 27(6), 713-739. https://doi.org/10.12989/sem.2007.27.6.713.
  29. Resatoglu, R., Aksogan, O. and Emsen, E. (2010), "Static analysis of laterally arbitrarily loaded non-planar non-symmetrical coupled shear walls", Thin Wall. Struct., 48(9), 696-708. https://doi.org/10.1016/j.tws.2010.04.009.
  30. Scaletti, H. (2015), Class Notes from the Course on Numerical Methods in Engineering, Postgraduate Section of the National University of Engineering, Lima, Peru.
  31. Skattum, K.S. (1971), "Dynamic analysis of coupled shear walls and sandwich beams", Earthquake Eng. Res. Lab., California Inst. of Technol., Pasadena.
  32. Tong, G. and Lin, C. (2021), "Relations between buckling and vibrational characteristics of coupled shear walls", Struct., 31, 1173-1184. https://doi.org/10.1016/j.istruc.2021.01.084.
  33. Wang, Q.F. (1997), "Lateral buckling of thin-walled members with openings considering shear lag", Struct. Eng. Mech., 5(4), 369-383. https://doi.org/10.12989/sem.1997.5.4.369.
  34. Wang, R.T., Hu, H.S. and Guo, Z.X. (2021), "Analytical study of stiffened multibay planar coupled shear walls", Eng. Struct., 244, 112770. https://doi.org/10.1016/j.engstruct.2021.112770.
  35. Xu, G. and Li, A. (2018), "Research on the response of concrete cavity shear wall under lateral load", Struct. Des. Tall Spec. Build., 28(3), e1577. https://doi.org/10.1002/tal.1577.
  36. Zalka, K.A. (2002), "Buckling analysis of buildings braced by frameworks, shear walls and cores", Struct. Des. Tall Spec. Build., 11(3), 197-219. https://doi.org/10.1002/tal.194.
  37. Zalka, K.A. (2007), "A simple method for the deflection analysis of tall wall-frame building structures under horizontal load", Struct. Des. Tall Spec. Build., 18(3), 291-311. https://doi.org/10.1002/tal.410.
  38. Zalka, K.A. (2013), "Maximum deflection of symmetric wall-frame buildings", Periodica Polytechnica, Civil Eng., 2(57), 173-184. https://doi.org/10.3311/PPci.7172.
  39. Zhang, L., Liu, T. and Chen, Y. (2023), "Calculations of additional axial force and coupling ratio for coupled shear walls", Struct., 47, 1531-547. https://doi.org/10.1016/j.istruc.2022.11.126.
  40. Zhong, H.L., Liu, Z.J., Qin, H. and Liu, Y. (2018), "Static analysis of thin-walled space frame structures with arbitrary closed cross-sections using transfer matrix method", Thin Wall. Struct., 123(2), 255-269. https://doi.org/10.1016/j.tws.2017.11.018.