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ON NUCLEARITY OF SEMIGROUP CROSSED PRODUCTS

Qing Meng

Abstract. In this paper, we study nuclearity of semigroup crossed prod-

ucts for quasi-lattice ordered groups. We show the relationships among

nuclearity of the semigroup crossed product, amenability of the quasi-
lattice ordered group and nuclearity of the underlying C∗-algebra.

1. Introduction

The crossed product of a noncommutative dynamical system is one of the
most important constructions in operator algebra theory. It is natural to try to
extend this construction to algebraic structures that are even more basic than
groups, namely semigroups (see [5], [9] and [12]). In [12], Murphy introduced
the concept of the full crossed product of a C∗-algebra A by the semigroup
of automorphisms. However, Murphy’s construction leads to very complicated
C∗-algebras. It turns out that the full semigroup C∗-algebra introduced by
Murphy is too large and not fit for studying amenability. For example, the
full semigroup C∗-algebra of N× N in the sense of Murphy is not nuclear (see
[13, Theorem 6.2]). Hence, Li gave some new constructions of the full semigroup
crossed product of a unital C∗-algebra A by a left-cancellative semigroup P in
[9] and [10].

Moreover, nuclearity is an important approximation property of C∗-algebras,
which is closely related to the amenability of groups (see [2] and [8]). In [9],
Li studied semigroup C∗-algebras for left cancellative semigroups and showed
how left amenability of semigroups can be expressed in analogy to the group
case. Soon after, Li characterized nuclearity of semigroup C∗-algebras in terms
of faithfulness of left regular representations and amenability of group actions
(see [10]).

In Section 2, we recall constructions of the full semigroup crossed product
and the reduced semigroup crossed product. In Section 3, we study nuclearity
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of semigroup crossed products for quasi-lattice ordered groups. In particular,
we obtain our main results in Theorem 3.2 and Theorem 3.7.

Theorem 1.1. Suppose that ω is a state on Dr such that ω(EP ) = 1. If G is
amenable, then the following statements are equivalent.

(1) A⋊α P is nuclear.
(2) A⋊α,r P is nuclear.
(3) A is nuclear.

Theorem 1.2. Suppose that ω is a state on Dr such that ω(EX) = 1 for all
X ∈ J , X ̸= ∅, and A has an α-invariant state τ . If A⋊α,r P is nuclear, then
(G,P ) has approximation property for positive definite functions.

In Section 4, we focus on the case of lattice ordered groups. In particular,
we have the following (see Corollary 4.10).

Corollary 1.3. Assume that (G,G+) is countable. Then the following state-
ments are equivalent.

(1) C∗(G+) is nuclear.
(2) C∗

r (G
+) is nuclear.

(3) G is amenable.

2. Semigroup crossed product

In this paper, a C∗-dynamical system will refer to a triple (A,M,α), where
A is a unital C∗-algebra, M is a left-cancellative monoid, and α is a homomor-
phism from M to the group Aut(A) of automorphisms on A.

Let B be a unital C∗-algebra, a covariant homomorphism from (A,M,α) to
B is a pair (φ,W ), where φ : A → B is a ∗-homomorphism and W : M → B
is an isometric homomorphism, such that

φ(αs(a))Ws =Wsφ(a)

for all s ∈ M,a ∈ A. If B is the algebra B(H) of bounded linear operators on
a Hilbert space H, we call (W,φ,H) a covariant representation.

We now turn to the construction of the full semigroup C∗-algebra introduced
by Li. Given an element s ∈M and a subset X ⊆M , we define

sX = {sx : x ∈ X} and s−1X = {y ∈M : sy ∈ X}.
If M is a subsemigroup of a group G, then we can also translate a subset X by
a group element g. We denote the translation by g ·X = {gx |x ∈ X}.

A right ideal of M is a subset X of M which is closed under right multi-
plication. Let J be the smallest family of right ideals of M that contains M
and ∅, and is closed under left multiplication and taking pre-images under left
multiplication. In fact, it follows from [9] that

J = {s−1
1 t1 · · · s−1

m tmM : m ≥ 1, si, ti ∈M} ∪ ∅.
We call the elements in J constructible right ideals.
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Definition ([9, Definition 2.2]). The full semigroup C∗-algebra C∗(M) ofM is
the universal C∗-algebra generated by isometries {vs : s ∈M} and projections
{eX : X ∈ J} satisfying the following relations:

I.(1) vst = vsvt, I.(2) vseXv
∗
s = esX ,

II.(1) eM = 1, II.(2) e∅ = 0, II.(3) eX∩Y = eXeY

for all s, t ∈M and X,Y ∈ J .

Li also introduced a new construction of the full semigroup crossed product
in [9]. The full semigroup crossed product of A by M with respect to the
action α is the unital C∗-algebra A ⋊α M with two unital ∗-homomorphisms
ιA : A→ A⋊α M and ιM : C∗(M) → A⋊α M satisfying

ιA(αp(a))ιM (vp) = ιM (vp)ιA(a)

for all a ∈ A and p ∈ M , which has the following universal property: if D
is a unital C∗-algebra and φA : A → D, φM : C∗(M) → D are unital ∗-
homomorphisms satisfying the covariance relation

φA(αp(a))φM (vp) = φM (vp)φA(a)

for all a ∈ A and p ∈ M , there exists a unique ∗-homomorphism φA × φM :
A⋊α M → D such that

(φA × φM ) ◦ ιA = φA and (φA × φM ) ◦ ιM = φM .

Let (π,H) be a faithful representation of A and λ be the regular isometric
representation of M on ℓ2(M). For a ∈ A, we define π(a) ∈ B(ℓ2(M,H)) as
follows:

(π(a)f)(s) = π(α−1
s (a))f(s)

for all f ∈ ℓ2(M,H) and s ∈M . Then (π, idH⊗λ) is a covariant representation,
that is called a regular representation. By the universal property, there exists
a unique ∗-homomorphism λ(A,M,α) from A ⋊α M into B(ℓ2(M,H)). We call
λ(A,M,α)(A ⋊α M) the reduced semigroup crossed product of (A,M,α), and
denote it by A ⋊α,r M . We identify idH ⊗ λ with λ, and regard A as a C∗-
subalgebra of A ⋊α,r M . By the covariance relation, A ⋊α,r M is the closure
of

span{aλs1λ∗t1 · · ·λsnλ
∗
tn : n ∈ N, a ∈ A, si, ti ∈M}.

In fact, the reduced semigroup crossed product does not depend on the choice
of the faithful representation (π,H). If A = C, we call C∗

r (M) := C⋊α,rM the
reduced semigroup C∗-algebra of M . In particular, C∗

r (M) is the C∗-algebra
generated by the regular isometric representation λ of M on ℓ2(M).

3. Main results

In this section, (G,P ) is a quasi-lattice ordered group that acts on a unital
C∗-algebra A through an action α.
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Definition. A quasi-lattice ordered group is a pair (G,P ) consisting of a sub-
semigroup P of a discrete group G such that

(1) P ∩ P−1 = {e}, where e is the unit of G;
(2) for all g ∈ G, the intersection P ∩ (g ·P ) is either empty or of the form

pP for some p ∈ P .

Hence, there is a partial order on G defined by s ≤ t if s−1t ∈ P . Let JG
P be

the smallest family of subsets of G which contains J and which is closed under
left translations by group elements (Y ∈ JG

P , g ∈ G ⇒ g · Y ∈ JG
P ) and finite

intersections. In fact, JG
P = {g · P : g ∈ G} ∪ {∅}.

For a subset X of P , we write 1X for the characteristic function of X defined
on P . Let EX ∈ B(ℓ2(P )) be the multiplication operator corresponding to 1X
and Dr = C∗({EX : X ∈ J}) ⊆ B(ℓ2(P )). Hence, Dr is an abelian C∗-
subalgebra of C∗

r (P ). Let U : G→ B(ℓ2(G)) be the left regular representation
of G. The group G acts on ℓ∞(G) by the left translation action βG. Let DG

P

be the smallest C∗-subalgebra of ℓ∞(G) ⊆ B(ℓ2(G)) which is βG-invariant and
contains EP . Note that Dr = EPD

G
P .

We define the operator a(α) ∈ B(H ⊗ ℓ2(G)) by

a(α)(ξ ⊗ δs) = (α−1
s (a)(ξ))⊗ δs

for all ξ ∈ H and s ∈ G. It follows from [10, Lemma 3.6] that there exists a
faithful representation π̂ of (A⊗DG

P )⋊α⊗βG,r G on H ⊗ ℓ2(G) defined by

π̂((a⊗ d)g) = a(α)(IH ⊗ d)(IH ⊗ Ug)

for all a ∈ A, d ∈ DG
P and g ∈ G, where IH is the identity operator on H.

We denote the image of (A ⊗ DG
P ) ⋊α⊗βG,r G under the representation π̂ by

A⋊α,r (P ⊆ G). Hence, we identify (A⊗DG
P )⋊α⊗βG,rG with A⋊α,r (P ⊆ G).

It follows from [10, Lemma 3.9] that

A⋊α,r P ∼= (IH ⊗ EP )(A⋊α,r (P ⊆ G))(IH ⊗ EP ).

From now on, we do not distinguish between the space H ⊗ ℓ2(P ) and the
subspace (IH⊗EP )(H⊗ℓ2(G))(IH⊗EP ). In this way, the element a ∈ A⋊α,rP
is the same as (IH ⊗EP )a(α)(IH ⊗EP ), the element λs ∈ A⋊α,r P is nothing
else but (IH ⊗ EP )(IH ⊗ Us)(IH ⊗ EP ). For the sake of simplicity, we denote
(IH ⊗ EP )(A⋊α,r (P ⊆ G))(IH ⊗ EP ) by B and let

B0=span{(IH⊗EP )a(α)(IH⊗EX)(IH⊗Ug)(IH⊗EP ) : a ∈ A, g ∈ G,X ∈ JG
P }.

Hence, B0 is dense in B. Through a routine computation, we have the following
result.

Lemma 3.1. (a) Let Ē be the canonical faithful conditional expectation from
(A ⊗DG

P ) ⋊α⊗βG,r G to A ⊗DG
P . Then Ē|B is a conditional expectation from

B to A⊗Dr.
(b) If ω is a state on Dr such that ω(EP ) = 1, then idA⊗ω is a conditional

expectation from A⊗Dr to A, where idA is the identity map on A.
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In fact, Ē|B is the canonical faithful conditional expectation from A⋊α,r P
to A⊗Dr. The above results suggest that E = (idA ⊗ω) ◦ Ē|B is a conditional
expectation from A⋊α,r P to A such that

E((IH ⊗ EP )a(α)(IH ⊗ EX)(IH ⊗ Ug)(IH ⊗ EP )) =

{
ω(EP∩X)a, g = e;
0, g ̸= e;

for all a ∈ A and X ∈ JG
P .

Theorem 3.2. Suppose that ω is a state on Dr such that ω(EP ) = 1. Consider
the following statements.

(1) A⋊α P is nuclear.
(2) A⋊α,r P is nuclear.
(3) A is nuclear.

Then (1) ⇒ (2) ⇒ (3). If G is amenable, then they are equivalent.

Proof. (1) ⇒ (2) It follows from the fact that a quotient of a nuclear C∗-algebra
is nuclear (see [1, IV 3.1.13]).

(2) ⇒ (3) It follows from [2, Exercise 2.3.3].
Assume that G is amenable. [10, Theorem 5.24] shows that A ⋊α P ∼=

A ⋊α,r P . Since DG
P is abelian, it follows from [16, Proposition 2.1.2] that

(A⊗DG
P )⋊α⊗βG,r G is nuclear. Hence, A⋊α P is nuclear. □

Remark 3.3. Assume thatM is a cancellative, countable, right amenable semi-
group with an action α on a nuclear C∗-algebra A. It follows from [9, Lemma
2.15] and the dilation theory for semigroup crossed products by endomorphisms
in [6] that A⋊α M is nuclear.

Lemma 3.4. Suppose that ω is a state on Dr such that ω(EX) = 1 for all
X ∈ J , X ̸= ∅, and τ is an α-invariant state of A. Let τ ′ = τ ◦ E. Then

τ ′(xλh) = τ ′(λhx)

for all h ∈ P and x ∈ A⋊α,r P .

Proof. For each x = (IH ⊗ EP )a(α)(IH ⊗ EX)(IH ⊗ Ug)(IH ⊗ EP ) ∈ B, we
have

τ ′(x(IH ⊗ EP )(IH ⊗ Uh)(IH ⊗ EP ))

= τ ′((IH ⊗ EP )a(α)(IH ⊗ EX)(IH ⊗ Ug)(IH ⊗ EP )(IH ⊗ Uh)(IH ⊗ EP ))

= τ ′((IH ⊗ EP )a(α)(IH ⊗ EX)(IH ⊗ Eg·P )(IH ⊗ Ug)(IH ⊗ Uh)(IH ⊗ EP ))

= τ ′((IH ⊗ EP )a(α)(IH ⊗ EX∩g·P )(IH ⊗ Ugh)(IH ⊗ EP ))

=

{
τ(a), if g = h−1 and P ∩X ∩ g · P ̸= ∅;
0, otherwise

for all h ∈ P , and

τ ′((IH ⊗ EP )(IH ⊗ Uh)(IH ⊗ EP )x)

= τ ′((IH ⊗ EP )(IH ⊗ Uh)(IH ⊗ EP )a(α)(IH ⊗ EX)(IH ⊗ Ug)(IH ⊗ EP ))
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= τ ′((IH ⊗ EP )αh(a)(α)(IH ⊗ Eh·P )(IH ⊗ Eh·X)(IH ⊗ Uhg)(IH ⊗ EP ))

= τ ′((IH ⊗ EP )αh(a)(α)(IH ⊗ Eh·(P∩X))(IH ⊗ Uhg)(IH ⊗ EP ))

=

{
τ(αh(a)) = τ(a), if g = h−1 and P ∩ h · (P ∩X) ̸= ∅;
0, otherwise

for all h ∈ P . Since

P ∩ h · (P ∩X) = h · (h−1 · P ∩ P ∩X),

it is easy to see that τ ′(xλh) = τ ′(λhx) for all h ∈ P and x ∈ A⋊α,r P . □

From now on, assume that (G,P ) is a quasi-lattice ordered group such
that the inequality g ≤ h implies sgt ≤ sht for all g, h, s, t ∈ G. Let Q =
{x ∈ G : x ≤ e}. Then PQ = QP = {pq : p ∈ P, q ∈ Q} = {x ∈ G :
x has upper bounds in P}.

Remark 3.5. If s1, . . . , sn are arbitrary elements of PQ, then there is an element
u ∈ P such that si ≤ u for all 1 ≤ i ≤ n. To see this, write si = g−1

i hi, where
gi, hi ∈ P , set u = h1 · · ·hn, then si ≤ hi ≤ u.

Using a similar argument of [12, Proposition 2.2], we have the following
results.

Lemma 3.6. Let B be a unital C∗-algebra. If W : P → B is an isometric
homomorphism, then there exists a unique extension W : PQ → B such that
Wg−1h = W ∗

gWh for all g ∈ P and h ∈ PQ. Moreover, if g1, . . . , gm ∈ PQ,
then the matrix (Wg−1

i gj
)ij is positive in Mm(B).

Hence, the regular isometric representation λ of P has a unique extension
λ : PQ→ B(ℓ2(G+)) such that λs = λ∗gλh, where s = g−1h ∈ PQ.

The quasi-lattice ordered group (G,P ) is said to have approximation property
for positive definite functions if there exists a net {φi}i∈I of positive definite
functions with finite support on PQ (see [14]) such that φi(x) → 1 for all
x ∈ PQ.

Theorem 3.7. Suppose that ω is a state on Dr such that ω(EX) = 1 for all
X ∈ J , X ̸= ∅, and A has an α-invariant state τ . If A⋊α,r P is nuclear, then
(G,P ) has an approximation property for positive definite functions.

Proof. Suppose that the nets φn : A ⋊α,r P → Mkn(C) and ψn : Mkn(C) →
A ⋊α,r P of completely positive maps satisfy the conditions of nuclearity. By
the argument of [11, Theorem 4.3], we can assume that the range of ψn is in
B0. Let Φn = ψn ◦ φn. By Lemma 3.6, we define

φn(g) = τ ′(Φn(λg)λ
∗
g)

for all g ∈ PQ. If {g1, . . . , gm} is an arbitrary finite set in PQ, use Remark
3.5 to choose u ∈ P such that si = ugi ∈ P for all i = 1, 2, . . . ,m. For all
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c1, . . . , cm ∈ C, it follows from the positivity of τ ′ and Lemma 3.6 that
m∑

i,j=1

cic̄jφn(g
−1
j gi) =

m∑
i,j=1

cic̄jτ
′((Φn(λg−1

j gi
))(λg−1

j gi
)∗)

=

m∑
i,j=1

cic̄jτ
′((Φn(λs−1

j si
))(λs−1

j si
)∗)

=

m∑
i,j=1

τ ′(c̄jλsjΦn(λ
∗
sjλsi)ciλ

∗
si) ≥ 0.

Hence, φn is positive definite on PQ. Moreover, as n→ +∞,

|φn(g)− 1| = |τ ′(Φn(λg)λ
∗
g)− 1| = |τ ′(Φn(λg)λ

∗
g)− τ ′(λgλ

∗
g)|

= |τ ′((Φn(λg)− λg)λ
∗
g)| ≤ ∥Φn(λg)− λg∥ → 0

for all g ∈ PQ. Since {Φn}n≥1 is finite dimensional, φn is finite supported. This
shows that (G,P ) has approximation property for positive definite functions.

□

Remark 3.8. If the conditions in the above theorem is satisfied, then it follows
from [14, Propositions 2] that (G,P ) is amenable in the sense of [14]. Moreover,
[7, Corollary 3.8] shows that (G,P ) is amenable in the sense of [7].

4. Examples

In this section, we only consider lattice ordered groups. We will construct
the conditional expectation from A⋊α,r P to A in a different way.

Definition. A lattice ordered group is a pair (G,≤) consisting of a discrete
group G and a partially ordered ≤ on G such that if e is the unit of G and
G+ = {s ∈ G | e ≤ s}, then

(1) Every pair x, y of elements of G has a least common upper bound
σ(x, y) in G+.

(2) The inequality g ≤ h implies sgt ≤ sht for all g, h, s, t ∈ G.

If the order is a total order, we call (G,G+) an ordered group. It follows from
[3] that if (G,G+) is a lattice ordered group, then G is quasi-lattice ordered
and

G = G+(G+)−1 = (G+)−1G+.

The class of all lattice ordered groups is large. It contains all torsion-
free abelian groups, all torsion-free nilpotent groups, free groups, Thompson’s
group, surface groups, pure braid groups, the group of all order automorphisms
of a totally ordered space, the group of orientation-preserving homeomorphisms
of the line and so on (see [4]).

Lemma 4.1. Let (G,G+) be a lattice ordered group. Then G+ is right re-
versible (left reversible), i.e., for every p1, p2 ∈ G+, we have G+p1∩G+p2 ̸= ∅.
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Proof. We only prove that G+ is right reversible. For any p1, p2 ∈ G+, we
have

σ(p1, p2) = σ(p1, p2)p
−1
1 p1 = σ(p1, p2)p

−1
2 p2 ∈ G+p1 ∩G+p2.

This shows that G+ is right reversible. □

Let (A,G, α) be a C∗-dynamical system, where (G,G+) is a lattice ordered
group. Then it follows from the properties of lattice ordered groups that A⋊α,r

G+ is the closed linear span of {aλsλ∗t , a ∈ A, s, t ∈ G+}.
Let us begin with the following fact concerning the reduced semigroup

crossed product. We denote the vector state x→ ⟨xδp, δp⟩ by ρp.

Lemma 4.2. ρ̄ = lim
p
ρp is a tracial state on C∗

r (G
+).

Proof. For sufficiently large p, we have

ρp(λp1λ
∗
q1) =

{
1, p1 = q1
0, otherwise

for all p1, q1 ∈ G+. Since the linear span of {λsλ∗t , s, t ∈ G+} is dense
in C∗

r (G
+), a routine ε/3-argument shows the convergence for general x in

C∗
r (G

+). Moreover,

ρ̄(λp1λ
∗
q1λp2λ

∗
q2) = ρ̄(λp1q

−1
1 σ(q1,p2)

λ∗
q2p

−1
2 σ(q1,p2)

) =

{
1, p1q

−1
1 = q2p

−1
2

0, otherwise

and

ρ̄(λp2
λ∗q2λp1

λ∗q1) = ρ̄(λp2q
−1
2 σ(q2,p1)

λ∗
q1p

−1
1 σ(q2,p1)

) =

{
1, p2q

−1
2 = q1p

−1
1

0, otherwise

for all p1, p2, q1, q2 ∈ G+. Hence, ρ̄ is a tracial state on C∗
r (G

+). □

Remark 4.3. In general, ρ̄ is not faithful. For example, let G = Z and x =
λ1λ

∗
2 − λ2λ

∗
3, then

ρ̄(xx∗) = ρ̄((λ1λ
∗
2 − λ2λ

∗
3)(λ1λ

∗
2 − λ2λ

∗
3)

∗)

= ρ̄((λ1λ
∗
2 − λ2λ

∗
3)(λ2λ

∗
1 − λ3λ

∗
2))

= ρ̄(λ1λ
∗
1 − λ2λ

∗
2 − λ2λ

∗
2 + λ2λ

∗
2) = 0.

Using the similar argument of [2, Proposition 4.1.7], we have the Fell’s ab-
sorbtion principle of the semigroup C∗-dynamical system.

Lemma 4.4 (Fell’s absorbtion principle). Let (u, idA,H) be a covariant rep-
resentation of (A,G, α). Then the covariant representation

(u⊗ λ, idA ⊗ 1,H ⊗ ℓ2(G+))

is unitarily equivalent to a regular representation. In fact, we have a ∗-isomor-
phism

C∗((u⊗ λ)(G+), A⊗ 1) ∼= A⋊α,r G
+.
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Theorem 4.5. The map E(
∑

s,t∈G+ as,tλsλ
∗
t ) =

∑
s∈G+ as,s extends to a con-

ditional expectation from A⋊α,r G
+ to A.

Proof. Let (u, idA,H) be a covariant representation of (A,G, α). By Lemma
4.4, the reduced semigroup crossed product A ⋊α,r G

+ can be viewed as the
C∗-algebra generated by A⊗1 and u⊗λ(G+), which is a subalgebra of B(H)⊗
C∗

r (G
+). In fact, the map E is the restriction of idB(H) ⊗ ρ̄ on A⋊α,r G

+. □

Remark 4.6. It is easy to see that ρ̄ is a state ω on Dr such that ω(EX) = 1
for all X ∈ J , X ̸= ∅. Hence, the conditional expectation E is the same as the
one defined in Section 3.

As a special case of Theorem 3.2, we have the following result.

Theorem 4.7. Consider the following statements.

(1) A⋊α G
+ is nuclear.

(2) A⋊α,r G
+ is nuclear.

(3) A is nuclear.

Then (1) ⇒ (2) ⇒ (3). If G is amenable, then they are equivalent.

Example 4.8. Let α be an automorphism of a nuclear C∗-algebra A. We also
use α to denote the induced action of Z given by n 7→ αn. Since Z is amenable,
it follows from Theorem 4.7 that A⋊α Z+ is nuclear.

Since G = G+(G+)−1, the following result is a special case of Theorem 3.7.

Theorem 4.9. Suppose that A has an α-invariant state τ . If A ⋊α,r G
+ is

nuclear, then G is amenable.

An application of Theorem 4.9 is the following corollary, which can be re-
garded as a generalization of [2, Theorem 2.6.8]. Let C∗(G) (C∗

r (G)) be the
full (reduced) group C∗-algebra of G.

Corollary 4.10. Assume that (G,G+) is countable. Then the following state-
ments are equivalent.

(1) C∗(G+) is nuclear.
(2) C∗

r (G
+) is nuclear.

(3) C∗(G) is nuclear.
(4) C∗

r (G) is nuclear.
(5) G is amenable.
(6) G+ is right amenable.
(7) G+ is left amenable.
(8) C∗(G+) = C∗

r (G
+).

Proof. We always have (1) ⇒ (2) and (3) ⇔ (4) ⇔ (5).
(5) ⇒ (6) It follows from the right version of [15, Proposition 1.28] and

Lemma 4.1.
(6) ⇒ (1) It follows from [9, Proposition 4.15].
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(2) ⇒ (5) Since A = C always has an invariant tracial state, then Theorem
4.9 shows the amenability of G.

(5) ⇔ (7) It follows from [15, Propositions 1.27 and 1.28].
(7) ⇔ (8) Since G+ is left reversible, then there exists a non-zero character

on C∗(G+) (see [9, Lemma 4.6]). The conclusion follows from the statements
of [9, Section 4]. □

Remark 4.11. If one of the conditions in Corollary 4.10 holds, it follows from
[10, Theorem 6.1] that for any action α of G on A, the ∗-homomorphism
λ(A,G+,α) : A⋊α G

+ → A⋊α,r G
+ is an isomorphism.

Another application of Theorem 4.9 is the following corollary.

Corollary 4.12. If A is a nuclear C∗-algebra with an α-invariant state τ , then
the following statements are equivalent.

(1) A⋊α G
+ is nuclear.

(2) A⋊α,r G
+ is nuclear.

(3) G is amenable.

We conclude this article with the following examples.

Example 4.13. Let (F2,F+
2 ) be the free group on two generators with the

total order (see [4]). The conjugation action will be denoted by γ.
(1) Since F2 is not amenable, the full group C∗-algebra C∗(F2) is not nuclear.

It follows from Theorem 3.2 that C∗(F2)⋊γ F+
2 is not nuclear.

(2) We define a map τ : Cb(F2) → C by τ(f) = f(e) for every f ∈ Cb(F2).
Then τ is a γ-invariant tracial state on Cb(F2). It follows from Theorem 4.9
that Cb(F2)⋊γ,r F+

2 is not nuclear.
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