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ON REVERSIBLE Z,-DOUBLE CYCLIC CODES

NUPUR PATANKER

ABSTRACT. A binary linear code is said to be a Za-double cyclic code
if its coordinates can be partitioned into two subsets such that any si-
multaneous cyclic shift of the coordinates of the subsets leaves the code
invariant. These codes were introduced in [6]. A Za-double cyclic code
is called reversible if reversing the order of the coordinates of the two
subsets leaves the code invariant. In this note, we give necessary and suf-
ficient conditions for a Za-double cyclic code to be reversible. We also give
a relation between reversible Za-double cyclic code and LCD Za-double
cyclic code for the separable case and we present a few examples to show
that such a relation doesn’t hold in the non-separable case. Furthermore,
we list examples of reversible Zz-double cyclic codes of length < 10.

1. Introduction

A linear code C over a finite field F, is called reversible if for any codeword
c=(c1, ca,...,¢,) € C, the word ¢f* = (c,,,..., c2, ¢1) obtained by reversing
the order of coordinates of ¢, is also in C. Reversible codes have been stud-
ied for many years and have applications in certain data storage and retrieval
systems. Massey in [21] first introduced reversible codes. Apart from indi-
cating the potential applications of these codes in [21], he also gave necessary
and sufficient conditions for cyclic and convolutional codes to be reversible. In
[30], the authors studied the minimum distance of a certain class of reversible
cyclic codes. Since then, reversible codes have been an object of great interest
for researchers. Various construction techniques for reversible codes have been
studied in [3,8,9,11,23,24], etc. In [17], the authors gave the necessary and
sufficient conditions for cyclic codes over Z,« to be reversible. In [27], the au-
thors classified reversible cyclic codes over the ring R = IFy 4 ulF, where u? =0
(mod ¢). In [2], reversible cyclic codes over Z4 have been studied. Reversible
complement cyclic codes over Galois rings have been studied in [19]. Condi-
tions for reversibility of negacyclic codes, some classes of quasi-cyclic codes

Received March 11, 2022; Revised June 18, 2022; Accepted August 1, 2022.

2020 Mathematics Subject Classification. Primary 94B05; Secondary 94B15, 11T71.

Key words and phrases. Za-double cyclic code, reversible Za-double cyclic codes, LCD
codes.

The author is supported by NBHM, DAE, Govt. of India.

(©2023 Korean Mathematical Society

443



444 N. PATANKER

and constacyclic codes over finite field have been studied in [25], [12] and [5],
respectively. In [20], the authors studied the dimension and minimum distance
of a family of reversible BCH codes over finite fields. Recently in [12], the
authors proved a necessary and sufficient condition for the self-orthogonality
of reversible QC codes of index 2. In [9], the authors generalized the construc-
tion of reversible codes given in [23] for odd and even length. To deal with a
block-wise error, they also studied blockwise reversible codes.

Another generalization of binary cyclic codes is a Zs-double cyclic code. A
Zo-double cyclic code is a binary linear code of length n = r + s such that
its coordinates can be partitioned into two sets of r and s coordinates and
any simultaneous cyclic shift of coordinates of both subsets leaves the code
invariant. These codes were studied in [6]. In [18], the authors studied double
quadratic residue codes (QRC) of length n = p + ¢ for prime numbers p and
q in FY x Fi. In [26], we calculated the weight distribution of Zs-double cyclic
codes for a special case. In [4], the authors studied the properties of the R-
double cyclic codes and R-double constacyclic codes where R = Fy + vFy,
v? = v. Double cyclic codes over Z, are studied in [15]. In the case of the
ring R = F, + uF, + u?F,, the properties of double cyclic codes over R and
its dual have been studied in [33]. Triple cyclic codes over various rings have
been studied in [22,29,34], etc. The family of Zs-double cyclic codes is closely
related to generalized quasi-cyclic codes of index 2. Generalized quasi-cyclic
codes and their properties have been studied in [1,7,13,14,16,28,31], etc.

In [6], the authors determined the polynomial representation of Zs-double
cyclic codes and their duals. Besides this, they have also studied the relations
between Zso-double cyclic and other families of cyclic codes. They showed

that a Zs-double cyclic code is a Zs[z]-submodule of (3%3?1) X éf[ﬂ) and has

the form C' = ((b(x) | 0), (I(z) | a(x))), where b(x), I(z) € 2% such that

b(x) | (z" — 1) and a(z) € éfﬁ% such that a(x) | (z° — 1). Using the Zs[x]-
module structure of C, we obtained results stating necessary and sufficient
conditions for reversibility of Zs-double cyclic codes.

This paper is organized as follows. In Section 2, we discuss the basic prop-
erties of Zy-double cyclic codes, as proved in [6]. In Section 3, we prove our
main results in Theorems 3.9 and 3.12 that give necessary and sufficient condi-
tions for a Zs-double cyclic code to be reversible. In Section 4, we discuss the
relation between reversible Zo-double cyclic codes and LCD Zs-double cyclic
codes for the separable and the non-separable case. Section 5 lists examples of
reversible Zs-double cyclic codes of length < 10.

2. Preliminaries

Definition ([6], Definition 1). Let C be a linear code over Zy of length n =
r + s, where r, s are non-negative integers. Then C is called a Zs-double cyclic
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code if
(ao,a1,...,ar—1 | bo,b1,...,bs_1) €C
implies
(ar—la ag, - -+, Ar—2 | bs—lv bOa LR bs—2) eC.
Let ¢ = (ag, a1,-..,a,—1 | bo, b1,..., bs—1) be a codeword in C and let i

be an integer. We denote the i-th shift of ¢ by
¢ = (ap—i, a1—i,.-, @r1—i | bo—i, bi—is.. . bs_1-4),
where the subscripts are read modulo r and s, respectively.

Let C C Zj x Z5 be a Zy-double cyclic code. Let C) be the canonical
projection of C' on the first r coordinates and Cs on the last s coordinates.
The code C' is called separable if it is the direct product of C, and Cs.

Let R, s denote the ring <ff[ﬂ> X éﬁ%. There is a bijective map given by
¢ L5 X L5 — Ry s
u=(ag, a1,..., ap_1 | bo, b1,...,bs_1)
= u(r) = (ag +a1x + -+ ap_12" 1 | by + by + -+ + bs_12°7h).
The operation x defined as

%t Zofx] X Rys — Ry
A@) = (p(x) | q(x)) = (A@)p(x) | Az)q()),

gives the ring R, ¢ a structure of Zs[z]-module. Note that 2% x u(z) = u(? (x)
for all 3.
We have the following result on the structure of Zy-double cyclic codes.

Theorem 2.1 ([6], Theorem 1). The Zy[z]-module R, s is a Noetherian Zs|x]-
module, and every submodule N of R, s can be written as
N ={(b(z) | 0), (l(z) | a(x))),

where b(z), l(z) € <ff[_xl> with b(z) | (z" — 1) and a(x) € éfﬁ% with a(zx) |
(z° —1).

Thus, we can identify Zs-double cyclic codes in Z5 x Z5 as submodules of
R, . Hence, any submodule of R, ; is a Zy-double cyclic code. If C' = ((b(z) |
0), (I(z) | a(x))) is a Za-double cyclic code, then the canonical projections
C, and Cs are binary cyclic codes generated by ged(b(x),l(x)) and a(z), re-
spectively. The following proposition gives some conditions on the generator
polynomials of a Zs-double cyclic code.

Proposition 2.2 ([6], Proposition 1). Let C' = ((b(z) | 0), (I(z) | a(z))) be a
Zs|x]-double cyclic code. Then we can assume that
(1) Cs = {a(x)), with a(z) | (z* = 1),
(2) ll)ie]?r‘ze( C’T’ :1{)(])(30) | q(z)) € C'| g(x) = 0}. Then m-(C") = (b(x)) with
(3) degli(x) < deg(b(a)).
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Proposition 2.3 ([6], Proposition 2). Let C' = ((b(z) | 0), (I(z) | a(z))) be a
Zo-double cyclic code. Assume that the generator polynomials of C' satisfy the
conditions in Proposition 2.2. Then b(z) | £=1(x).

a(x)

Remark 2.4. Note that the condition b(x) | “Z(;)ll(x) is equivalent to the con-
dition 7,.(C") = (b(x)).

Proposition 2.5 ([6], Proposition 3). Let C = ((b(z) | 0), (I(z) | a(z))) be a
Zo-double cyclic code. Assume that the generator polynomials of C' satisfy the
conditions in Proposition 2.2. Define the sets

S1={(b(z) [ 0), 2% (b(x) | 0),...,2"~4ECED1x (b(a) | 0)},

S2 = {(I(z) | a(2)), = (Uz) | a(@)), ..., a* 4B x (i) | a(x))}.

Then, S1 U Ss forms a minimal generating set for C' as a Zo-module.

Remark 2.6. Propositions 2.3 and 2.5 hold true even if the condition deg(i(x)) <
deg(b(x)) is not satisfied.

3. Reversible Z3-double cyclic code

Definition. The reverse of a Zs-double cyclic code C, denoted by CF, is a
linear code over Zs defined as

CR = {(ar—17a7'—27~ ) ‘ bs_1,bs_2,. .. ,bo) :

(ag,a1,...,ar—1]bo,b1,...,bs—1) € C}.
Proposition 3.1. C® is a Zy-double cyclic code.

Proof. Let t :=lem(r,s)—1 =ar—1=0bs—1 wherea > 1, b > 1 integers. Then
we have to show that for any codeword (ay—1,ar—2,...,a0 | bs—1,bs—2,...,bg) €
CE we have (ag,ar_1,...,a1 | bo,bs_1,...,b1) € CT. Now,

(a1 + @p_ox + -+ agr" ' | by_1 +bs ox+---+boz* ) € ch
= (ap+ a1z +---+ ap_qa" ! | bo + b1z + -+ bs,lxsfl) eC
=o' x(ag+ax+--+a_ 12" | b+ bz -+ b2t eC
= (2 Hag +arx+ - +a,_1277) | 25 by + bz + - + by 1257 1)) € C
= (@Y Vgt ajz+ -+ apy2” ) | 2O g 4 b+ -+ b2 )) € C
= (x" Yap a1+ Far_1z" ) |2 bo + bz -+ b2 Y)) € C
= (a1 +apx + -+ a,_12" 2 Fagx" "t | by + b+ - F by 12572 £ b2 ) € C
— (ap +ar_ 12+ +arx" ' | by + by 1z -+ bzt € CE.

This proves the result. (I

Definition. If C = C%, then C is called a reversible Z,-double cyclic code.
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3.1. Generators of CE

Before coming to the results on the generators of code CT, we give a result
that is required later. For a polynomial f(x) € Zs[z], we define reciprocal
polynomial f*(z) € Zs[z] as f*(z) = z98 (@) f(1) For the properties of
reciprocal polynomial, refer to [10].

Proposition 3.2. We have C; ((b1(z) | 0),(l1(z) | a1(x))) and Cy =
((b2(z) | 0),(I2(x) | a2(x))) Zz-double cyclic codes of length n = r + s. If
the generators satisfy conditions (1) and (2) of Proposition 2.2, then C; = Cy
if and only if the following conditions are satisfied

(1) b1(z) = ba(x),
(2) a1(x) = az(x),
(3) br(2) | (h(2) = la(z)) or ba() | (lh(z) — la(2)).
Proof. First suppose C7 = Cs. Then
(Cl)s = (02)5
= (a1(2)) = (az())
= a1(z) = Az)az(z) + p(z)(z* — 1)
= ag(x) | a1(x) (as az(z) | (z° —1)).
Similarly, we get a1(x) | az(z). Thus, a;(x) = 112( ).
Proceeding similarly, C{ = C% gives by (z) = ba(z). Now we prove (3).
|

(L(2) | ar(2)) = () * (bo(2) | 0) + p(a) = (Ia(2) | az(a))
— 11(2) = A@)ba(a) + u()ls (@) (mod (2" — 1)) and
ar(2) = i (@)u() (mod (* — 1)),

deg(bl( ))—1 and deg(u(z)) < s—deg(ai(x)) — 1. This
dZz _1) It follows

for some A(x), p(x) € Za[x]

where deg( ( )

)<
gives u(x (m

Ii(x)=A(z)by (z)+ (l—i—t(x)%(_x)l)lz(x) (mod (z"—1)) for some t(z) € Zsx].

We get by (z) | (I1(z) — l2(z)).

Conversely, suppose that (1), (2) and (3) hold. We want to show C; = Cs.
Let bi(x) = ba(x) =: b(z) and a1(x) = az(z) =: a(x). Since dimg, C; =
r + s — deg(b(x)) — deg(a(z)) = dimg, C3. So, we only need to show that
(I1(z) | a1(z)) € Cy. From (3), we have l1(z) = la(z) + a(z)b(z) for some
a(x) € Zs[z]. Then

(h(z) [ a1(z)) = (l2(2) + a(x)b(2) | a(z))
= (I2(2) | a2(x)) + a(x) * (b2(z) | 0) € Ca. 0

Corollary 3.3. Let C = {(b(z) | 0), (I(x) | a(x))) be a Zo-double cyclic code.
Then the following conditions determine the generators of C' uniquely.

(1) b(z) | (" = 1) and a(z) | (z* —1).

(
(
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(2) deg I(z) < deg b(z).
(3) b(x) a(m)ll( x) and Cs = (a(x)).

From Proposition 3.1 we have, C® is a Zy-double cyclic code, thus
Cf = ((B(x)|0), (L(z) | A(x))),
where B(x) € 722 such that B(z) | (2" — 1), 7,((C®)) = (B(x)), where
(CEY = {(p(z) | q(z)) € CB : q(x) = 0}, and A(x) € 537% such that
A(z) | (z* — 1) and (CF), = (A(x)).
In the following results we use the notation ff(x) € <fj[f]1> for the poly-

nomial corresponding to the word u* = (an_1, an_o2,...,a0), where f(z) €
<f§[f]1> is the polynomial corresponding to v = (ag, a@1,...,a,-1). Thus,

fR(z) = 2"t f(2). Also for the Zs-double cyclic code C, (p(z) | q(z)) € C if
and only if (p®(z) | ¢"(z)) € CE.

Proposition 3.4. Let C = ((b(z) | 0),(I(z) | a(x))) be a Zz-double cyclic
code with C® = ((B(z) | 0),(L(x) | A(x))) such that their generators satisfy
conditions (1) and (2) of Proposition 2.2. Then, we have B(x) = b*(z).

Proof. We have 27~4e(®(@)=1 4 (p(z) | 0) € C which gives (b*(x) | 0) € (CT)'.
So, B(x) | b*(x).

Again, we have (B(z) | 0) € (C®)’, which implies (Bf(x) | 0) € C. This
gives B (x) = A(x)b(z) where deg(\(z)) < r—deg b(x)—1. Therefore, B(z) =
"INz b(x~ ) = 27— 17de8(@) \(z=1)b* (). This gives b*(z) | B(z). This
proves the result. O
Proposition 3.5. Let C = {((b(z) | 0),(I(x) | a(x))) be a Zy-double cyclic
code with Ct = ((B(z) | 0),(L(x) | A(x))) such that their generators satisfy
conditions (1) and (2) of Proposition 2.2. Then, we have A(z) = a*(x).
Proof. We have (1%(z) | a®(x)) € CF. So, zdee@@)+1 4 (1%(z) | af(z)) € CE.
This gives (zd8(@@)+11R(z) | a*(x)) € CF. (The operations are performed
mod (2" — 1) and mod (z° — 1) in first and second part, respectively.) Thus,

A(z) | a*(x).
Again, (Lf(z) | Af(z)) € C. This gives A®(z) € Cy = {(a(z)). So,
AB(z) = p(x )a(a:) where deg(u(x)) < s — deg(a(z)) — 1. This implies A(x) =
ps~dee(a@) =1 (x=1)g*(x). This proves the result. O
Proposition 3.6. For r — deg(l(z)) > s — deg(a(x)), we have
b*(x) | (L(a?) _ xr—s—&-deg(a(m))—deg(l(m))l*(x)).

Thus if r — s + deg(a(x)) — deg(l(z)) + deg(I*(z)) < deg(b(z)), then L(z) =
gS.'r‘fs+deg(a(z))7deg(l(:n))l*(l,)‘

Proof. We have
2o~ 148, (1(2) | a(x)) € C
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s (st (1Y | ¥ (z)) € OF
= (o7 stdeale@)=desl@)* (1) | 0¥ ()) € CF.
Then
(@7 —sdeg(a@)=degU@) * (1) | a*(x)) = A(z) % (0 (2) | 0) + () % (L(x) | a* (),
where deg(\(x)) < r —deg(b(z)) — 1 and deg(u(z)) < s — deg(a(r)) — 1.
This gives u(z) =1 and
s deg(a(@) —deg(@) * (1) = A(z)b* (z) + L(x).
(z

This implies b* () | (L(z) — a7 —sTdes(a@))—deg(U(@))* (1)), O

Theorem 3.7. Let C = ((b(z) | 0), (I(x) | a(z))) be a Za-double cyclic code
such that its generators satisfy conditions (1) and (2) of Proposition 2.2. If
r —deg(l(x)) > s — deg(a(x)), then C is reversible if and only if the following
conditions are satisfied

(1) b(z) = b"(z),
(2) a(z) = a*(x),
(3) b(lﬁ) ‘ (l,rferdcg(a(x))7dcg(l(x))l*(1,) _ l(l‘))

Proof. Note that by Proposition 3.2, we have C = C¥ if and only if b(z) =
b*(z), a(z) = a*(x) and b(z) | (L(z) — I(z)). Then
b(z) | (L(z) = I(z))
(LE) | ( ( )_ r— s+deg(a(z))—deg(l(z))l*(l,) +xr—s-&-deg(a(z))—deg(l(z))l*(aj) _ l(l’))
— b(x) | (z"~sHdesal@)=deel@)* (1) — [(z)) (by Proposition 3.6). O

Remark 3.8. If we assume that the conditions (1), (2) and (3) of Proposition
2.2 are satisfied by a Zs-double cyclic code and r — deg(l(x)) > s — deg(a(x)),
then we get the same result as Theorem 3.7 (as in that case instead of b(z) |

(L(z) — I(x)) we get L(z) = I(x)).

In case r—deg(l(z)) < s—deg(a(z)), let s—deg(a(z)) —1+deg(l(z)) = tr+
where 8 < 7.

We have

ms—l—deg(a(x)) * (l(.’l?) | a(a?)) cC.
If 3 > deg(l(z)), then
(2P~ dea@) () | o~ 1-deala@)g(z)) € C
— (" () | a* () € O
If 8 < deg(i(x)), then
($r+5fdeg(l(z))l(l,) | xs—lfdeg(a(x))a(l,)) c(C

— (2" (2) | a*(z)) € CF.
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If r—1— B +deg(l*(z)) >r, L'(x) :== 2" P (2) 4 (2" + 1) (zdes" @) -1-8 4
a’deg(l*(m))flmdeg(l*(m))_l_ﬁ_l _|_ e +aﬁ+2x + CL,@+1)7 Where l*(x) = xdeg(l*(x)) _|_
adeg(l*(a:))flxdeg(l*(x))_l 4+ 4 a1 x + ag.

Proposition 3.9. For r — deg(l(z)) < s — deg(a(z)), we have

b*(2) | (L(z) — 2" 1771 (x)),
where B is given by s — deg(a(x)) — 1+ deg(l(x)) =tr + 8, B <r.
Proof. The proof is the same as the proof of Proposition 3.6. O
Theorem 3.10. Let C = ((b(z) | 0), (I(z) | a(x))) be a Za-double cyclic code
such that its generators satisfy conditions (1) and (2) of Proposition 2.2. If

r —deg(l(x)) < s — deg(a(x)), then C is reversible if and only if the following
conditions are satisfied

(1) b(z) = b*(x),

(2) a(z) = a*(z),

(3) b(x) | (21771 () — U(x)),
where [ is given by s — deg(a(z)) — 1+ deg(l(z)) =tr+ 8, B <r.
Proof. Note that by Proposition 3.2, we have C = C¥ if and only if b(z) =
b*(z), a(z) = a*(x) and b(z) | (L(z) — I(z)). Then

b(z) | (L(z) — l(x))
— b(z) | (L(z) — xr_l_’@l*(x) + xr_l_’@l*(x) — ()
— b(z) | (xr_l_’@l*(x) —l(x)). 0

Remark 3.11. If we assume that the conditions (1), (2) and (3) of Proposition
2.2 are satisfied by a Zs-double cyclic code and r — deg(l(x)) < s — deg(a(z)),
then we get the same result as Theorem 3.10 (as in that case instead of b(x) |
L(z) — l(x) we get L(x) = I(z)).

We have the following result from [6].

Proposition 3.12 ([6], Proposition 7). Let C = {(b(x) | 0), (I(x) | a(x))) be
a separable Zs-double cyclic code. Assume that the generator polynomials of
C satisfy the conditions (1), (2) and (3) in Proposition 2.2. Then l(x) = 0.
Moreover, C* is a separable Zs-double cyclic code such that C+ = <(m*—1 |

. b (z)
0), (01 &)
Proposition 3.13. Let C' be a separable Zs-double cyclic code C' such that
the gemerator polynomials of C satisfy the conditions of Proposition 2.2. Then
C = ((b(z) | 0),(0 | a(z))). We have C® is separable and CT = ((b*(x) |
0),(0 | a*(x))). Moreover, C is reversible if and only if b(xz) and a(zx) are
self-reciprocal, i.e., b*(x) = b(z) and a*(z) = a(x).
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4. Relation to LCD Z;-double-cyclic codes

Let C be a Zsy-double cyclic code of length n = r + s. Then its dual C*
is also a Zs-double cyclic code. A linear complementary dual Zs-double cyclic
code is defined as follows.

Definition. A Zy-double cyclic code C' is said to be a linear complementary
dual Zs-double cyclic code if C N C+ = {0}.

For cyclic codes over F,, we have the following result:

Proposition 4.1 ([32]). A g-ary cyclic code, whose length n is relatively prime
to the characteristic p of Fq, is an LCD code if and only if it is a reversible
code.

Such a result doesn’t hold in the case of non-separable Zs-double cyclic
codes, as can be seen from the following examples.

Example 4.2. Let r = 4, s = 3, b(z) = (z+1)?, a(z) = 2*+2+1, l(z) = z+1.
Then n = r 4+ s = 7 is relatively prime to 2, and
c={(0,0,0,0]0,0,0),(1,1,0,0 ] 1,1,1),(0,1,0,1 ] 0,0,0),(1,0,0,1 | 1,1, 1),
(1,0,1,00,0,0),(0,1,1,0] 1,1,1),(1,1,1,1 | 0,0,0), (0,0,1,1 | 1,1,1)},
CLZ{(O,QO,O | 0,0,0),(0,0,0,0]0,1,1),(0,0,0,0 | 1,0,1),(0,0,0,0 | 1,1,0),
(0,1,0,110,0,1),(0,1,0,1|0,1,0),(0,1,0,1]1,0,0),(0,1,0,1 | 1,1,1),
(1,0,1,00,0,1),(1,0,1,0]0,1,0),(1,0,1,0| 1,0,0), (1,0,1,0 | 1,1,1
(1,1,1,10,0,0),(1,1,1,1]0,1,1),(1,1,1,1|1,0,1),(1,1,1,1 | 1,1,0
Here C is a reversible Zy-double cyclic code but C N C+ # {0}.

),
)}-

Example 4.3. Let r = s =3. Let b(x) =z + 1, a(z) =22 + 2+ 1, I(z) = 1.
Here r and s are both relatively prime to 2. We have
¢ ={(0,0,0]0,0,0),(1,0,0|1,1,1),(0,1,10,0,0),(1,1,1|1,1,1),
(1,1,010,0,0),(0,1,0] 1,1,1),(1,0,1]0,0,0),(0,0,1] 1,1,1)},
Cc+ = {(0,0,010,0,0),(0,0,0|0,1,1),(0,0,0 | 1,0,1),(0,0,0 | 1,1,0),
(1,1,1]0,0,1),(1,1,1]0,1,0),(1,1,1]1,0,0),(1,1,1|1,1,1)}.
Thus, C is a reversible Zs-double cyclic code but C N C+ # {0}.
Example 4.4. Let r = s = 5. Let b(z) = 2 + 23 + 22 + 2 + 1, a(z) =
x+1, l(x) = 1. Here r and s are both relatively prime to 2. C has Z,-basis
{(1,1,1,1,1]0,0,0,0,0),(1,0,0,0,0 | 1,1,0,0,0),(0,1,0,0,0 | 0,1,1,0,0),
(0,0,1,0,010,0,1,1,0),(0,0,0,1,0 | 0,0,0,1,1)}.

It can be checked that C is not reversible but C' N C+ = {0}, i.e., C is a LCD
Zo-double cyclic code.
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Example 4.5. Let r =6, s = 3, b(z) = 2> + v + 1, [(x) = z, a(z) = 1. Then
n=r-+s=9 is relatively prime to 2, and C has Zy-basis

{(1,1,1,0,0,0 | 0,0,0), (0,1,1,1,0,0 | 0,0,0),
(070717 1’ 17O|O70’0)’(O7070’ 17171 |0’070)7(0’ 1’0)07070| 17070)7
(0,0,1,0,0,0 | 0,1,0),(0,0,0,1,0,0 | 0,0,1)}.

It can be checked that C' is not reversible but C' N C+ = {0}, i.e., C' is a LCD
Zo-double cyclic code.

4.1. For C separable

Recall that a Zs-double cyclic code C' is separable if C' is the direct product
of C,. and Cy. We have b(z) = % and a(x) = ff*(_ml)

Using the ideas of the paper [32], we have the following conditions for a
separable Zy-double cyclic code to have complementary dual.

Lemma 4.6. Let C = ((b(z) | 0),(0 | a(x))) be a separable Za-double cyclic
code of length n = r + s. Assume that the generator polynomials of C' satisfy
the conditions of Proposition 2.2. Then C is a LCD Zs-double cyclic code if

and only if ged(b(x), b(z)) = 1 and ged(a(x),a(z)) = 1.

Proof. Since C' is separable, we have C = C, x Cy and C+ =
Also, the components of C' and C* have the form C, = (b(z)), Cs = (a(x
Ct = (B(x)> and C+ = (a(z)). Therefore, C, N C+ = (Iem(b(x), b(z))) and
Cs N CE = (lem(a(w), a(x))).

Now, CNC* = (C,.NC) x (CsNCY). Therefore, CNCL = {0} if and only
if C, OCl = {0} and C,NC{} = {0}. We note that C NC:+ = {0} if and only
it lcm(b(x) b(x)) = 2" — 1 and Cs N C¢+ = {0} if and only if lem(a(x),a(x)) =
2® — 1. But 2" — 1 is divisible by b(x) and b(x), and deg(b(x)) = r — deg(b(z)).
Therefore, lem(b(z), b(x)) = 2" — 1 if and only if ged(b(z), b(x)) = 1. Similarly,
lem(a(z),a(z)) = ° — 1 if and only if ged(a(x), a(z)) = 1. O

Theorem 4.7. Let C be a separable Zo-double cyclic code of length n = r + s.
Assume that the generator polynomials of C satisfy the conditions of Proposi-
tion 2.2. Then C is a LCD code if and only if b(x) and a(x) are self-reciprocal
(i.e., b*(z) = b(x) and a*(x) = a(x)) and all the monic irreducible factors
of b(x) have the same multiplicity in b(x) and in =" — 1 and all the monic
irreducible factors of a(x) have the same multiplicity in a(x) and in z° — 1.

Proof. Let 1 = 7-2° and s = 5-2f where ¢ > 0, f > 0 and ged(2,7) = 1,
ged(2,8) = 1. First, suppose that C is a LCD code. Then by Lemma 4.6, we
have ged(b(x),b(z)) = 1 and ged(a(z),a(z)) = 1. Thus, from

);
(1) 2" — 1= b()(b(x))" = b (2)b(e),
it follows that b(x) must divide b*(z). Thus, b*(x) = b(x), i.e., b(z) is self-
reciprocal. Also, ged(b(z),b(x)) = 1 implies that ged(b*(z),b(x)) = 1 which
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further implies that ged(b(z), (b(z))*) = 1. Because
(2) 2" —1=b(x)(b(x)" = (" - 1)%,

it follows that all the irreducible factors of b(x) must have multiplicity 2°.
Similarly, a(x) is self-reciprocal and all the monic irreducible factors of a(z)
have the same multiplicity in a(z) and in 2° — 1.

Conversely, suppose first that one of b(x) or a(x) is not self-reciprocal. With-
out loss of generality, suppose that b(x) is not self-reciprocal, i.e., b(z) does not
divide b*(z). It follows then from (1) that ged(b(z), b(x)) # 1 and hence, by
Lemma 4.6, it follows that C' is not a LCD code.

Finally, suppose that b(z) and a(z) are self-reciprocal but some monic ir-
reducible factor of b(z) or a(z) has multiplicity less than 2¢ and 27, respec-
tively. The assumption b(x) and a(z) are self-reciprocal implies b(z) and a(x)
are self-reciprocal. Without loss of generality, assume that some monic ir-
reducible factor of b(z) has multiplicity less than 2¢. From (2), we have
1 # ged(b(x), (b(x))*) = ged(b(x),b(x)), and hence by Lemma 4.6, C' is not
a LCD code. O

Thus, we get the following analogy between reversible Zs-double cyclic code
and LCD Zs-double cyclic code for the separable case.

Corollary 4.8. Let C be a separable Zo-double cyclic code of length n = r+s.
Assume that the generator polynomials of C' satisfy the conditions in Proposi-
tion 2.2. If r and s are odd positive integers, then C is a LCD code if and only
if it is a reversible Zo-double cyclic code.

5. Examples

In the following tables, we list several examples of non-trivial reversible Zso-
double cyclic codes of length n = r + s < 10 where r, s > 2.

[r, s] b(x) a(x) I(x)
12, 2] 1 1, 24+ 1, 22 +1 0
x+1 1, 4+ 1 0, 1
z+1 z2 41 0
22 +1 1 0,1, z, 2+ 1
22 +1 z 41 0, z+1
13, 2] 1 1, 24+ 1, 22 +1 0
x4+ 1 1, 4+ 1 0, 1
x+1 12+1 0
22 4+a+1 1, z+1, 22 +1 0
23 +1 1, 241 0, 22 +z+41
2,3] |1 1, 241, 2 4+ax+1, 2°5+1 | 0
z+1 1, 22 +z+1 0, 1
z+1 z+1, a3 +1 0
22 +1 1, 22 +z+1 0, z+1
22 +1 41 0
12, 4] 1 1, 24+ 1, 22 +1, (z+ | 0
D3, (z+1)*
z+1 1, 41, 2°+1, (z+1)% | 0, 1
x4+ 1 (z+1)4 0
22 +1 1, 22 +1 0,1, 2, 2+ 1
22 +1 z4+1, (x41)3 0, 41




454

N. PATANKER

[4,2] |1 1, o+1, 22 +1 0
z+1 1, z 41 0, 1
z+1 z2 41 0
22 +1 1 0, 1, ¢, z 4+ 1
zz+l z2+1 0, z+1
22 +1 z2 41 0
(z +1)3 1, z+1 0, 22 +1
(z +1)3 z2 4+ 1 0
z* 41 1 0, 22 +1, a2 4+ 1), (z+1)°3
zt +1 41 0, (z+1)°3
13, 3] 1 1, e+1,z°+z+1,25+1 | 0
z+1 1, 22 +x+1 0, 1
z+1 z+1, 5 +1 0
2242 +1 1 0, 1
224241 z+1 0, z+4+1
1'2+;L'+1 12+z+1,13+1 0
z3 +1 1 0,1, 24z, 224z +1
23 +1 z+1 0, 41
23 +1 22 4z +1 0, 22 +a+41
2,5] |1 1, 241, a7 +a254+22+ [0
x+1
15+1
x+1 1,x4+x3+r2+m+1 0, 1
z+1 z+1, ° +1 0
a:§+l 1,1:4+a:3+a:2+m+1 0, z+1
e +1 x+1 0
5,2] |1 1, o+1, o2 +1 0
z+1 1,2$+1 0, 1
x4+ 1 < +1 0
a:4+a:3+a:2+a:+1 1,x+1,a:2+1 0
25 +1 1, 41 0, 2*+2% +22+a2+41
[3,4] |1 1, 2+1, 2241, (z+1)3, | 0
(z+1)*
z+1 1, 2+1,2241, (x+1)3, | 0, 1
z+1 (z +1)* 0
22+ +1 1, = + 1,22 + 1, (x 4+ |0
D3, (@ +1)*
23 +1 1, 2+ 1,22 +1, (e+1)% | 0, a2 +z+1
[4, 3] 1 1, a4+1,2°+x+1, 2°4+1 | 0
z+1 1, 22 +z+1 0, 1
z+1 z+1, 3 +1 0
22 +1 1, 22 4o 4+1 0, z 41
22 +1 z+1, 3 +1 0
(z +1)3 1, 22 +z+1 0, 22 4+1
(z +1)3 z4+1, 25 +1 0
(w+1)i 1, 22+ o 4+1 0, (x4 1)3
(x4 1) x4+ 1 0
12, 6] 1 1, 241, 2 +1, 224+ | 0
1, =% 4+ 1,
(22 +2+1)2, (z4+1) (2% +
x4+ 1)%,
(z+1)2(z?+z+1), z8+1
z+1 1, o+1, 2+ +1 0, 1
(22 +z+1)2, 2341, (z+
(a2 +x+1)2
x4+ 1 12+1, (z+1)2(z2+z+ 0
1), 2% +1
12+1 1, z2+z+l, (z2+z+1)2 0,1, =z, z+1
22 +1 z4+1, 2341, (@+1) (2?2 + | 0, z +1
@ +1)2
z2 41 124»17 (z+1)2(22+z+1) 0
[3, 5] 1 1, e+ 1, a7 +2°>+22+ | 0
z+1,15+1
x+1 1,x4+r3+r2+m+1 0, 1
z+1 z+1, ° +1 0
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x2+w+1 1, x4+ 1, x4+x3+x2+ 0
z+1, ° +1
z3+1 1, a:4+a:3+a:2+a:+1 0, 12+z+1
z3 +1 z 41 0
[4, 4] 1 1, 41, 22 +1, (z+1)3, [ 0
(& +1)*
z+1 1, 41, 22 +1, (z+1)% | 0, 1
z+1 (z +1)* 0
22 +1 1, 2 +1 0,1, , 2+ 1
22 +1 z+1, (x4 1)3 0, z+1
z2 +1 (z +1)* 0
(z +1)3 1 0, 1, @2, 22 +1
(z+1)3 x4+ 1 0, z+1, zz+1, z2 +
(z +1)3 22 +1, (z+1)°3 0, 224+ 1
(z +1)3 (z 4+ 1)* 0
(r+1)4 1 0, 1, acz, oc3+ar, x3+x+1,
13+z2+z, 13+z2+z+1
12+1
(z +1)* z+1 0, z+1, 23 + 22,
z3+z2+z+1
(z +1)* 22 41 0, 22+ 1, 2% + a,
zs+12+z+1
(z +1)4 (z+1)8 0, (z+1)3
[5, 3] 1 1, o+1, z°+z+1, z°+1 | 0
z+1 1, 22 4o 4+1 0, 1
z+1 z+1, x5 +1 0
2t 423 422 4241 1, o+1, a2 +z+1, 2341 | 0
zs+l 1, z2+a:+1 0, z4+z3+z2+z+1
z° +1 z 41 0
16, 2] 1 1, 24+ 1,22 +1 0
x4+ 1 1, 4+ 1 0, 1
x+1 12—0—1 0
22 +1 1 0,1, z, 2+ 1
22 +1 z+1 0, z+1
2?2 +1 z2 41 0
224241 1, z+1, 22 +1 0
(22 +z+1)2 1, z+1, 22 +1 0
23 +1 1, z+1 0, 22 +a+1
z3 +1 z2 41 0
(z+1)%2@2 +x+1) 1 0, 24ax+1, 23 +22+xz, a5+1
(z+1)2(zz+z+l) z+1 0, 3 +1
(r+1)2(x2+x+1) x2+1 0
(z+1)(z2+z+1)2 1, z+1 0, (z2+z+1)2
(a:+1)(a:2+a:+1)2 z2+1 0
20 +1 1 0, (@2 4+2+1)2, z(z?+x+1)2,
(z+1)(2z2 +z+1)2
28 +1 z 41 0, (x4 1)(z% + o+ 1)2
2,7 |1 1, o +1, o +1, 0
zG+15+z4+z?’+zz+
x+1
x+1 1, z6+z5+z4+a:3+z2+ 0, 1
x+1
z+1 z+1, 7 +1 0
12+1 1, z6+z5+z4+13+12+ 0, z+1
x+1
z2 +1 z4+1 0
13, 6] 1 1, 241, z2+1, 2°+z+1, | 0
(2 4z+1)2, (x4+1)2 (= +
z+ 1),
z3+1, (z+1)(z2+z+
12, 2% 41
z+1 1, 241, 22 4z+1, 23+1 | 0, 1
(22 +2+1)2, (e 4+1) (= +
z +1)2
x4+ 1 z2+17 (m+1)2(z2+z+ 0

1), z% +1
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224241 1, 23 +1 0, 1
zz+z+1 r+1, (z+1)2(12+z+1) 0, z+1
a:2+a:+1 x2+1, zc2+cc+l 0, =
x° + x4+ 1 (12+z2+1)2, (z+1)(z2+ 0
x4+ 1)
6
+1
2% +1 T:c3+l 2 2
3 ) 0, 1, z° 4+, 2=+ +1
13+i z2+1 0, z2+1, zz, 12+z+1
x° + x< + 1 0, z© +1
:024»1 122+z+1 0, z, z2+1, zz+z+1
223+1 (z +x+1)2 0, m2+m+1
z3+1 (z+ 122 +z+1) 0, 41
x® + 1 (z+1)(z2+z+1)2 0, z2+m+1
[4,5] | 1 1, c+1, @ +1 0
x4+x3+tac2+ac+1
x+1 1, z4+z‘5+z2+z+1 0, 1
z+1 z+1, % +1 0
:vz+1 1, z4+§3+12+z+1 0, z+1
< +1 z+1, z° +1 0
(z+1)2 1, z4+z3+12+z+1 0, z2+1
(z+1) z4+1, 2% +1 0
(l+1)i 1, 2t 42422 42+1 0, (z+1)3
(x4 1) x4+ 1 0
[5, 4] 1 1, 241, z° + 1 0
(@+ 13, (@+1)*
z+1 1, z+1, 22 +1, (z+1)% | 0, 1
a:4+1 (z +1)* 0
2t 423+ 224241 1, 241, 2241 0
. (z+ 1%, (@+1)*
2% +1 1, 2+1, 2241, (+1)% | 0, a* + 23+ 22+ +1
16, 3] 1 1, o+1, z°+z+1, z°+1 | 0
z+1 1, 22 +z+1 0, 1
a:2+1 z+1, 5 +1 0
z2+1 1, 22 4o 4+1 0, z+1
a:2+1 z+1, 3 +1 0
z°“ +xz+1 1 0, 1
a:2+z+l x+1 0, z+1
224z 41 224z +1, 25 +1 0
(z§+z+l)2 1 0, 23 +1
(w2+x+1>z @1 0, z(z? +z +1),
(13 +xz+1) ‘- +x+1, zs+1 0
x3+1 1 0,1, 22 +a, 22 +2+1
:03+1 x+1 0, z+1
a:3+1 x2+x+1 0, x2+x+1
x° 4+ 1 13+1 0
(a:+1)2(ac2+ac+1) 1 0, ac2+ac, (a:+1)3,
3
0 o xz° +1
(z+1)%(z“ 4+ x2+1) x4+ 1 0, w3+w
(1+1)z(m§+z+l) 22 +x+1 0, 2% 4+ 1
(z 4+ 1) (g +z+12) z3+1 0
(z+ (@2 +z+1) 1 0,2x3+1, ac22(ac2+x+1),
(z+1)(@% +z+1)2 1 o s D
, , x2+ 0, (z + )% (= + = +1)
(z+1)(z* +x+1) e 4+ x4+ 1 0, (zz+z+1)2
(a:+1)(a:2+a:+1)2 x3+1 0
28 +1 1 0, z3 +1,
x(ac+1)2(xz+x+l),
. (z+1)(z? +z+1)2
a:6+l z2+1 0, (m+1)2(z2+z+1)
28 +1 22+ ax+1 0, (x4 1) (2% + o+ 1)?
7,2] |1 1, o+1, o2 +1 0
z+1 1, z+1 0, 1
x4+ 1 12+1 0
(a;3+x+l)(x3+x2+l) 1, =+ 1, a:2+1 0
27 +1 1, 41 0, (@2 +a+1)(a> + 2 +1)
2,8] |1 (z+1)% 0<i<8 0
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z+1 (z+1)?% 0<i<7 0, 1
z+1 (z+1)8 0
22 +1 1, 22 +1, (z4+ D%, (z+ | 0, 1, =, 2 +1
1)6
22 +1 z+1, (@ 4+ 13 (z+ |0 z+1
1)%, (z + 1)7
[3,7] 1 1, 24+ 1, =’ +1 0
(2% +z+1)(2% + 22 +1)
z+1 1, (@ +z+1)(z®+22+1) | 0, 1
z+1 z+1, 7 +1 0
22tz +1 1, 241, 27 +1 0
(x3+x+1)(x3+x2+1)
23 +1 1, (z?’+z+1)(z?’+zz+1) 0, 22+ +1
23 +1 z4+1 0
[4, 6] 1 1, o+1, 22 +z+1, z°+1 | 0
(22 +x+1)2, (@+1) (x> +
@+ 1)2
(z+1)2(12+z+1), 23+
1, 25 +1
z+1 1, o+1, 22+ +1 0, 1
(22 4+ z+1)2, 2% +1,
(z+1)(z? + 2+ 1)
z+1 2241, (24+1)2(2?+a2+1) | 0
zs+1
22 +1 1, 22 +az+1, (@®+2+1)2 | 0, 1, =, 2 +1
z? +1 z+1, 2341, (z4+1)(z?+ | 0, =+ 1
z +1)2
12+1 z2+17 (m+1)2(z2+z+ 0
1), z% +1
(z+1)3 1, 241, (z+1)%(z?+z+ | 0, 22 +1
1),
(22 +z+1)2, 2% +1,
z2+z+1, (z+l)(12+
z+1)2
(z +1)3 z2+1, 25 +1 0
(z+1)4 1, 12+z+1, (z2+z+1)2 0, 12+1, 1(12+1),(z+1)3
(z+1)* z+1, 3 +1, 0, (z+1)°%
(z+ 1) (22 +z+1)2
(z +1)* 2241, (@+1)2(2?+a+1) | 0
[5, 5] 1 1, z+1, 2° + 1 0
w4+x3+x2+x+1
x+1 1, z4+z3+z2+z+1 0, 1
z+1 z+1, ° +1 0
z4+z3+z2+z+l 1 0, 1, 13+z2, zs+12+1
a:4+a:3+a:2+a:+1 x+1 0, z+1, xg, x3+x+1
z4+z3+z2+z+l z4+13+z2+z+1, 15+1 0
1'5+1 1 0, 1, r3+r2, z3+12+1,
z4+z, z4+z+1,
z4+13+z2+z
2+ 422441
zs+1 x4+ 1 0, z+1, z2(1+1)27
x4+x2+x+1
15+1 z4+z?’+zz+z+1 0, z4+zs+zz+z+1
6,4] | 1 (z+ 1), 0<i<4 0
z+1 (z+1)?% 0<i<3 0, 1
x4+ 1 (z+1)4 0
22 +1 1, 2 +1 0,1, , 2+ 1
z? +1 z4+1, (x41)3 0, 41
2?2 +1 (z +1)* 0
22 +z+1, (24+2+1)2 | (z4+1)), 0<i<4 0
23 +1 (z+1)?% 0<i<3 0, 22 +az+1
23 +1 (z +1)* 0
(z+1)2(12+z+1) 1, a:2+1 0, 12+z+1, z(12+z+1),
:v3+1
(z+1)2(12+z+1) r+1, (z+1)3 0, z3 4+ 1

(z+1)2@2 +x+1)

(@ +1)*

0
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(z+1)(2z? + x4+ 1)2 (z+1)?% 0<i<3 0, (22 +a+1)2
(z+1)(z? +z+1)2 (z +1)* 0
x6+1 1, m2+1 0, (a:2+ac+1)2, oc(a:2+ac+1)2,
(z+1)(z? +z+1)2
1'6+1 z+1, (z+1)3 0, (z+1)(w2+m+1)2
17, 3] 1 1, z+1, z°+z+1, 2541 | 0
z+1 1, 22 +z+1 0, 1
z+1 z4+1, 3 +1 0
(B 4+z+D)(z3+22+1) | 1, o+1, 22 +x+1, 2341 | 0
27 +1 1, 22 4241 0
x6+x5+x4+x3+x2+r+1
z7 +1 z+1 0
18, 2] 1 1, o+1, o2 +1 0
z+1 1, z 41 0, 1
z+1 z2 +1 0
22 +1 1 0, 1, ¢, z 4+ 1
zz+l z2+1 0, z+1
< +1 x4+ 1 0
(1+1)2 1,2cv+1 0, 22 +1
52134 f i 8, 22 41, z(z? + 1), (x4 1)3
(a:+l)j z2+1 0, (z+1)°3
(z+1) z= +1 0
(z+l)z 1,2z+1 0, (z+1)*
(z+1) 2?2 41 0
(z +1)° 1 0, (z+1)* z(z+1)*, (z+1)°
(x+1)2 x2+1 0, (z+1)°
(z+1) < 41 0
(a:+l); 1, @+1 0, (z+1)8
(z+1) e 4+ 1 0
(z+1)8 1 0, (z+1)°, z(z+1)°%, (@+1)7
(z +1)8 z 41 0, (z+1)7

6. Conclusion

In this note, we have given necessary and sufficient conditions for a Zo-
double cyclic code to be reversible. We have also shown a relation between
LCD Zsy-double cyclic codes and reversible Zs-double cyclic codes, in case the
code is separable. For non-separable codes, we have given a few examples
demonstrating that the relation between LCD and reversible codes, which hold
for cyclic codes, doesn’t hold for Zs-double cyclic codes. We also listed several
examples of reversible Zs-double cyclic codes.
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