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ON REVERSIBLE Z2-DOUBLE CYCLIC CODES

Nupur Patanker

Abstract. A binary linear code is said to be a Z2-double cyclic code

if its coordinates can be partitioned into two subsets such that any si-
multaneous cyclic shift of the coordinates of the subsets leaves the code

invariant. These codes were introduced in [6]. A Z2-double cyclic code

is called reversible if reversing the order of the coordinates of the two
subsets leaves the code invariant. In this note, we give necessary and suf-

ficient conditions for a Z2-double cyclic code to be reversible. We also give

a relation between reversible Z2-double cyclic code and LCD Z2-double
cyclic code for the separable case and we present a few examples to show

that such a relation doesn’t hold in the non-separable case. Furthermore,

we list examples of reversible Z2-double cyclic codes of length ≤ 10.

1. Introduction

A linear code C over a finite field Fq is called reversible if for any codeword
c = (c1, c2, . . . , cn) ∈ C, the word cR = (cn, . . . , c2, c1) obtained by reversing
the order of coordinates of c, is also in C. Reversible codes have been stud-
ied for many years and have applications in certain data storage and retrieval
systems. Massey in [21] first introduced reversible codes. Apart from indi-
cating the potential applications of these codes in [21], he also gave necessary
and sufficient conditions for cyclic and convolutional codes to be reversible. In
[30], the authors studied the minimum distance of a certain class of reversible
cyclic codes. Since then, reversible codes have been an object of great interest
for researchers. Various construction techniques for reversible codes have been
studied in [3, 8, 9, 11, 23, 24], etc. In [17], the authors gave the necessary and
sufficient conditions for cyclic codes over Zpk to be reversible. In [27], the au-

thors classified reversible cyclic codes over the ring R = Fq +uFq where u2 = 0
(mod q). In [2], reversible cyclic codes over Z4 have been studied. Reversible
complement cyclic codes over Galois rings have been studied in [19]. Condi-
tions for reversibility of negacyclic codes, some classes of quasi-cyclic codes
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and constacyclic codes over finite field have been studied in [25], [12] and [5],
respectively. In [20], the authors studied the dimension and minimum distance
of a family of reversible BCH codes over finite fields. Recently in [12], the
authors proved a necessary and sufficient condition for the self-orthogonality
of reversible QC codes of index 2. In [9], the authors generalized the construc-
tion of reversible codes given in [23] for odd and even length. To deal with a
block-wise error, they also studied blockwise reversible codes.

Another generalization of binary cyclic codes is a Z2-double cyclic code. A
Z2-double cyclic code is a binary linear code of length n = r + s such that
its coordinates can be partitioned into two sets of r and s coordinates and
any simultaneous cyclic shift of coordinates of both subsets leaves the code
invariant. These codes were studied in [6]. In [18], the authors studied double
quadratic residue codes (QRC) of length n = p + q for prime numbers p and
q in Fp

2 × Fq
2. In [26], we calculated the weight distribution of Z2-double cyclic

codes for a special case. In [4], the authors studied the properties of the R-
double cyclic codes and R-double constacyclic codes where R = F4 + vF4,
v2 = v. Double cyclic codes over Z4 are studied in [15]. In the case of the
ring R = Fq + uFq + u2Fq, the properties of double cyclic codes over R and
its dual have been studied in [33]. Triple cyclic codes over various rings have
been studied in [22,29,34], etc. The family of Z2-double cyclic codes is closely
related to generalized quasi-cyclic codes of index 2. Generalized quasi-cyclic
codes and their properties have been studied in [1, 7, 13,14,16,28,31], etc.

In [6], the authors determined the polynomial representation of Z2-double
cyclic codes and their duals. Besides this, they have also studied the relations
between Z2-double cyclic and other families of cyclic codes. They showed

that a Z2-double cyclic code is a Z2[x]-submodule of Z2[x]
⟨xr−1⟩ ×

Z2[x]
⟨xs−1⟩ and has

the form C = ⟨(b(x) | 0), (l(x) | a(x))⟩, where b(x), l(x) ∈ Z2[x]
⟨xr−1⟩ such that

b(x) | (xr − 1) and a(x) ∈ Z2[x]
⟨xs−1⟩ such that a(x) | (xs − 1). Using the Z2[x]-

module structure of C, we obtained results stating necessary and sufficient
conditions for reversibility of Z2-double cyclic codes.

This paper is organized as follows. In Section 2, we discuss the basic prop-
erties of Z2-double cyclic codes, as proved in [6]. In Section 3, we prove our
main results in Theorems 3.9 and 3.12 that give necessary and sufficient condi-
tions for a Z2-double cyclic code to be reversible. In Section 4, we discuss the
relation between reversible Z2-double cyclic codes and LCD Z2-double cyclic
codes for the separable and the non-separable case. Section 5 lists examples of
reversible Z2-double cyclic codes of length ≤ 10.

2. Preliminaries

Definition ([6], Definition 1). Let C be a linear code over Z2 of length n =
r+ s, where r, s are non-negative integers. Then C is called a Z2-double cyclic
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code if
(a0, a1, . . . , ar−1 | b0, b1, . . . , bs−1) ∈ C

implies
(ar−1, a0, . . . , ar−2 | bs−1, b0, . . . , bs−2) ∈ C.

Let c = (a0, a1, . . . , ar−1 | b0, b1, . . . , bs−1) be a codeword in C and let i
be an integer. We denote the i-th shift of c by

c(i) = (a0−i, a1−i, . . . , ar−1−i | b0−i, b1−i, . . . , bs−1−i),

where the subscripts are read modulo r and s, respectively.
Let C ⊆ Zr

2 × Zs
2 be a Z2-double cyclic code. Let Cr be the canonical

projection of C on the first r coordinates and Cs on the last s coordinates.
The code C is called separable if it is the direct product of Cr and Cs.

Let Rr,s denote the ring Z2[x]
⟨xr−1⟩ ×

Z2[x]
⟨xs−1⟩ . There is a bijective map given by

ϕ : Zr
2 × Zs

2 → Rr,s

u = (a0, a1, . . . , ar−1 | b0, b1, . . . , bs−1)
7→ u(x) = (a0 + a1x+ · · ·+ ar−1x

r−1 | b0 + b1x+ · · ·+ bs−1x
s−1).

The operation ⋆ defined as

⋆ : Z2[x]×Rr,s → Rr,s

λ(x) ⋆ (p(x) | q(x)) = (λ(x)p(x) | λ(x)q(x)),

gives the ring Rr,s a structure of Z2[x]-module. Note that xi ⋆ u(x) = u(i)(x)
for all i.

We have the following result on the structure of Z2-double cyclic codes.

Theorem 2.1 ([6], Theorem 1). The Z2[x]-module Rr,s is a Noetherian Z2[x]-
module, and every submodule N of Rr,s can be written as

N = ⟨(b(x) | 0), (l(x) | a(x))⟩,

where b(x), l(x) ∈ Z2[x]
⟨xr−1⟩ with b(x) | (xr − 1) and a(x) ∈ Z2[x]

⟨xs−1⟩ with a(x) |
(xs − 1).

Thus, we can identify Z2-double cyclic codes in Zr
2 × Zs

2 as submodules of
Rr,s. Hence, any submodule of Rr,s is a Z2-double cyclic code. If C = ⟨(b(x) |
0), (l(x) | a(x))⟩ is a Z2-double cyclic code, then the canonical projections
Cr and Cs are binary cyclic codes generated by gcd(b(x), l(x)) and a(x), re-
spectively. The following proposition gives some conditions on the generator
polynomials of a Z2-double cyclic code.

Proposition 2.2 ([6], Proposition 1). Let C = ⟨(b(x) | 0), (l(x) | a(x))⟩ be a
Z2[x]-double cyclic code. Then we can assume that

(1) Cs = ⟨a(x)⟩, with a(x) | (xs − 1),
(2) Define C ′ = {(p(x) | q(x)) ∈ C | q(x) = 0}. Then πr(C

′) = ⟨b(x)⟩ with
b(x) | (xr − 1).

(3) deg(l(x)) < deg(b(x)).
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Proposition 2.3 ([6], Proposition 2). Let C = ⟨(b(x) | 0), (l(x) | a(x))⟩ be a
Z2-double cyclic code. Assume that the generator polynomials of C satisfy the
conditions in Proposition 2.2. Then b(x) | xs−1

a(x) l(x).

Remark 2.4. Note that the condition b(x) | xs−1
a(x) l(x) is equivalent to the con-

dition πr(C
′) = ⟨b(x)⟩.

Proposition 2.5 ([6], Proposition 3). Let C = ⟨(b(x) | 0), (l(x) | a(x))⟩ be a
Z2-double cyclic code. Assume that the generator polynomials of C satisfy the
conditions in Proposition 2.2. Define the sets

S1 = {(b(x) | 0), x ⋆ (b(x) | 0), . . . , xr−deg(b(x))−1 ⋆ (b(x) | 0)},

S2 = {(l(x) | a(x)), x ⋆ (l(x) | a(x)), . . . , xs−deg(a(x))−1 ⋆ (l(x) | a(x))}.
Then, S1 ∪ S2 forms a minimal generating set for C as a Z2-module.

Remark 2.6. Propositions 2.3 and 2.5 hold true even if the condition deg(l(x)) <
deg(b(x)) is not satisfied.

3. Reversible Z2-double cyclic code

Definition. The reverse of a Z2-double cyclic code C, denoted by CR, is a
linear code over Z2 defined as

CR = {(ar−1, ar−2, . . . , a0 | bs−1, bs−2, . . . , b0) :

(a0, a1, . . . , ar−1 | b0, b1, . . . , bs−1) ∈ C}.

Proposition 3.1. CR is a Z2-double cyclic code.

Proof. Let t := lcm(r, s)−1 = ar−1 = bs−1 where a ≥ 1, b ≥ 1 integers. Then
we have to show that for any codeword (ar−1, ar−2, . . . , a0 | bs−1, bs−2, . . . , b0) ∈
CR, we have (a0, ar−1, . . . , a1 | b0, bs−1, . . . , b1) ∈ CR. Now,

(ar−1 + ar−2x+ · · ·+ a0x
r−1 | bs−1 + bs−2x+ · · ·+ b0x

s−1) ∈ CR

=⇒ (a0 + a1x+ · · ·+ ar−1x
r−1 | b0 + b1x+ · · ·+ bs−1x

s−1) ∈ C

=⇒ xt ⋆ (a0 + a1x+ · · ·+ ar−1x
r−1 | b0 + b1x+ · · ·+ bs−1x

s−1) ∈ C

=⇒ (xar−1(a0 + a1x+ · · ·+ ar−1x
r−1) | xbs−1(b0 + b1x+ · · ·+ bs−1x

s−1)) ∈ C

=⇒ (x(a−1)r+r−1(a0 + a1x+ · · ·+ ar−1x
r−1) | x(b−1)s+s−1(b0 + b1x+ · · ·+ bs−1x

s−1)) ∈ C

=⇒ (xr−1(a0 + a1x+ · · ·+ ar−1x
r−1) | xs−1(b0 + b1x+ · · ·+ bs−1x

s−1)) ∈ C

=⇒ (a1 + a2x+ · · ·+ ar−1x
r−2 + a0x

r−1 | b1 + b2x+ · · ·+ bs−1x
s−2 + b0x

s−1) ∈ C

=⇒ (a0 + ar−1x+ · · ·+ a1x
r−1 | b0 + bs−1x+ · · ·+ b1x

s−1) ∈ CR.

This proves the result. □

Definition. If C = CR, then C is called a reversible Z2-double cyclic code.
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3.1. Generators of CR

Before coming to the results on the generators of code CR, we give a result
that is required later. For a polynomial f(x) ∈ Z2[x], we define reciprocal
polynomial f∗(x) ∈ Z2[x] as f∗(x) = xdeg(f(x))f( 1x ). For the properties of
reciprocal polynomial, refer to [10].

Proposition 3.2. We have C1 = ⟨(b1(x) | 0), (l1(x) | a1(x))⟩ and C2 =
⟨(b2(x) | 0), (l2(x) | a2(x))⟩ Z2-double cyclic codes of length n = r + s. If
the generators satisfy conditions (1) and (2) of Proposition 2.2, then C1 = C2

if and only if the following conditions are satisfied

(1) b1(x) = b2(x),
(2) a1(x) = a2(x),
(3) b1(x) | (l1(x)− l2(x)) or b2(x) | (l1(x)− l2(x)).

Proof. First suppose C1 = C2. Then

(C1)s = (C2)s

=⇒ ⟨a1(x)⟩ = ⟨a2(x)⟩
=⇒ a1(x) = λ(x)a2(x) + µ(x)(xs − 1) for some λ(x), µ(x) ∈ Z2[x]

=⇒ a2(x) | a1(x) (as a2(x) | (xs − 1)).

Similarly, we get a1(x) | a2(x). Thus, a1(x) = a2(x).
Proceeding similarly, C ′

1 = C ′
2 gives b1(x) = b2(x). Now we prove (3).

(l1(x) | a1(x)) = λ(x) ⋆ (b2(x) | 0) + µ(x) ⋆ (l2(x) | a2(x))
=⇒ l1(x) = λ(x)b2(x) + µ(x)l2(x) (mod (xr − 1)) and

a1(x) = a1(x)µ(x) (mod (xs − 1)),

where deg(λ(x)) ≤ r−deg(b1(x))−1 and deg(µ(x)) ≤ s−deg(a1(x))−1. This

gives µ(x) = 1
(
mod xs−1

a1(x)

)
. It follows

l1(x)=λ(x)b1(x)+
(
1+t(x)

xs − 1

a1(x)

)
l2(x) (mod (xr−1)) for some t(x) ∈ Z2[x].

We get b1(x) | (l1(x)− l2(x)).
Conversely, suppose that (1), (2) and (3) hold. We want to show C1 = C2.

Let b1(x) = b2(x) =: b(x) and a1(x) = a2(x) =: a(x). Since dimZ2
C1 =

r + s − deg(b(x)) − deg(a(x)) = dimZ2
C2. So, we only need to show that

(l1(x) | a1(x)) ∈ C2. From (3), we have l1(x) = l2(x) + α(x)b(x) for some
α(x) ∈ Z2[x]. Then

(l1(x) | a1(x)) = (l2(x) + α(x)b(x) | a(x))
= (l2(x) | a2(x)) + α(x) ⋆ (b2(x) | 0) ∈ C2. □

Corollary 3.3. Let C = ⟨(b(x) | 0), (l(x) | a(x))⟩ be a Z2-double cyclic code.
Then the following conditions determine the generators of C uniquely.

(1) b(x) | (xr − 1) and a(x) | (xs − 1).
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(2) deg l(x) < deg b(x).

(3) b(x) | xs−1
a(x) l(x) and Cs = ⟨a(x)⟩.

From Proposition 3.1 we have, CR is a Z2-double cyclic code, thus

CR = ⟨(B(x) | 0), (L(x) | A(x))⟩,

where B(x) ∈ Z2[x]
⟨xr−1⟩ such that B(x) | (xr − 1), πr((C

R)′) = ⟨B(x)⟩, where
(CR)′ = {(p(x) | q(x)) ∈ CR : q(x) = 0}, and A(x) ∈ Z2[x]

⟨xs−1⟩ such that

A(x) | (xs − 1) and (CR)s = ⟨A(x)⟩.
In the following results we use the notation fR(x) ∈ Z2[x]

⟨xn−1⟩ for the poly-

nomial corresponding to the word uR = (an−1, an−2, . . . , a0), where f(x) ∈
Z2[x]

⟨xn−1⟩ is the polynomial corresponding to u = (a0, a1, . . . , an−1). Thus,

fR(x) = xn−1f( 1x ). Also for the Z2-double cyclic code C, (p(x) | q(x)) ∈ C if

and only if (pR(x) | qR(x)) ∈ CR.

Proposition 3.4. Let C = ⟨(b(x) | 0), (l(x) | a(x))⟩ be a Z2-double cyclic
code with CR = ⟨(B(x) | 0), (L(x) | A(x))⟩ such that their generators satisfy
conditions (1) and (2) of Proposition 2.2. Then, we have B(x) = b∗(x).

Proof. We have xr−deg(b(x))−1 ⋆ (b(x) | 0) ∈ C which gives (b∗(x) | 0) ∈ (CR)′.
So, B(x) | b∗(x).

Again, we have (B(x) | 0) ∈ (CR)′, which implies (BR(x) | 0) ∈ C. This
gives BR(x) = λ(x)b(x) where deg(λ(x)) ≤ r−deg b(x)−1. Therefore, B(x) =
xr−1λ(x−1)b(x−1) = xr−1−deg(b(x))λ(x−1)b∗(x). This gives b∗(x) | B(x). This
proves the result. □

Proposition 3.5. Let C = ⟨(b(x) | 0), (l(x) | a(x))⟩ be a Z2-double cyclic
code with CR = ⟨(B(x) | 0), (L(x) | A(x))⟩ such that their generators satisfy
conditions (1) and (2) of Proposition 2.2. Then, we have A(x) = a∗(x).

Proof. We have (lR(x) | aR(x)) ∈ CR. So, xdeg(a(x))+1 ⋆ (lR(x) | aR(x)) ∈ CR.
This gives (xdeg(a(x))+1lR(x) | a∗(x)) ∈ CR. (The operations are performed
mod (xr − 1) and mod (xs − 1) in first and second part, respectively.) Thus,
A(x) | a∗(x).

Again, (LR(x) | AR(x)) ∈ C. This gives AR(x) ∈ Cs = ⟨a(x)⟩. So,
AR(x) = µ(x)a(x) where deg(µ(x)) ≤ s− deg(a(x))− 1. This implies A(x) =
xs−deg(a(x))−1µ(x−1)a∗(x). This proves the result. □

Proposition 3.6. For r − deg(l(x)) ≥ s− deg(a(x)), we have

b∗(x) | (L(x)− xr−s+deg(a(x))−deg(l(x))l∗(x)).

Thus if r − s + deg(a(x)) − deg(l(x)) + deg(l∗(x)) < deg(b(x)), then L(x) =
xr−s+deg(a(x))−deg(l(x))l∗(x).

Proof. We have

xs−1−deg(a(x)) ⋆ (l(x) | a(x)) ∈ C
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=⇒ (xr−s+deg(a(x))l(x−1) | a∗(x)) ∈ CR

=⇒ (xr−s+deg(a(x))−deg(l(x))l∗(x) | a∗(x)) ∈ CR.

Then

(xr−s+deg(a(x))−deg(l(x))l∗(x) | a∗(x)) = λ(x)⋆(b∗(x) | 0)+µ(x)⋆(L(x) | a∗(x)),

where deg(λ(x)) ≤ r − deg(b(x))− 1 and deg(µ(x)) ≤ s− deg(a(x))− 1.
This gives µ(x) = 1 and

xr−s+deg(a(x))−deg(l(x))l∗(x) = λ(x)b∗(x) + L(x).

This implies b∗(x) | (L(x)− xr−s+deg(a(x))−deg(l(x))l∗(x)). □

Theorem 3.7. Let C = ⟨(b(x) | 0), (l(x) | a(x))⟩ be a Z2-double cyclic code
such that its generators satisfy conditions (1) and (2) of Proposition 2.2. If
r − deg(l(x)) ≥ s− deg(a(x)), then C is reversible if and only if the following
conditions are satisfied

(1) b(x) = b∗(x),
(2) a(x) = a∗(x),
(3) b(x) | (xr−s+deg(a(x))−deg(l(x))l∗(x)− l(x)).

Proof. Note that by Proposition 3.2, we have C = CR if and only if b(x) =
b∗(x), a(x) = a∗(x) and b(x) | (L(x)− l(x)). Then

b(x) | (L(x)− l(x))

⇐⇒ b(x) | (L(x)− xr−s+deg(a(x))−deg(l(x))l∗(x) + xr−s+deg(a(x))−deg(l(x))l∗(x)− l(x))

⇐⇒ b(x) | (xr−s+deg(a(x))−deg(l(x))l∗(x)− l(x)) (by Proposition 3.6). □

Remark 3.8. If we assume that the conditions (1), (2) and (3) of Proposition
2.2 are satisfied by a Z2-double cyclic code and r − deg(l(x)) ≥ s− deg(a(x)),
then we get the same result as Theorem 3.7 (as in that case instead of b(x) |
(L(x)− l(x)) we get L(x) = l(x)).

In case r−deg(l(x)) < s−deg(a(x)), let s−deg(a(x))−1+deg(l(x)) = tr+β
where β < r.

We have

xs−1−deg(a(x)) ⋆ (l(x) | a(x)) ∈ C.

If β ≥ deg(l(x)), then

(xβ−deg(l(x))l(x) | xs−1−deg(a(x))a(x)) ∈ C

=⇒ (xr−1−βl∗(x) | a∗(x)) ∈ CR.

If β < deg(l(x)), then

(xr+β−deg(l(x))l(x) | xs−1−deg(a(x))a(x)) ∈ C

=⇒ (xr−1−βl∗(x) | a∗(x)) ∈ CR.
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If r− 1−β+deg(l∗(x)) ≥ r, L′(x) := xr−1−βl∗(x)+ (xr +1)(xdeg(l∗(x))−1−β +
adeg(l∗(x))−1x

deg(l∗(x))−1−β−1+ · · ·+aβ+2x+aβ+1), where l
∗(x) = xdeg(l∗(x))+

adeg(l∗(x))−1x
deg(l∗(x))−1 + · · ·+ a1x+ a0.

Proposition 3.9. For r − deg(l(x)) < s− deg(a(x)), we have

b∗(x) | (L(x)− xr−1−βl∗(x)),

where β is given by s− deg(a(x))− 1 + deg(l(x)) = tr + β, β < r.

Proof. The proof is the same as the proof of Proposition 3.6. □

Theorem 3.10. Let C = ⟨(b(x) | 0), (l(x) | a(x))⟩ be a Z2-double cyclic code
such that its generators satisfy conditions (1) and (2) of Proposition 2.2. If
r − deg(l(x)) < s− deg(a(x)), then C is reversible if and only if the following
conditions are satisfied

(1) b(x) = b∗(x),
(2) a(x) = a∗(x),
(3) b(x) | (xr−1−βl∗(x)− l(x)),

where β is given by s− deg(a(x))− 1 + deg(l(x)) = tr + β, β < r.

Proof. Note that by Proposition 3.2, we have C = CR if and only if b(x) =
b∗(x), a(x) = a∗(x) and b(x) | (L(x)− l(x)). Then

b(x) | (L(x)− l(x))

⇐⇒ b(x) | (L(x)− xr−1−βl∗(x) + xr−1−βl∗(x)− l(x))

⇐⇒ b(x) | (xr−1−βl∗(x)− l(x)). □

Remark 3.11. If we assume that the conditions (1), (2) and (3) of Proposition
2.2 are satisfied by a Z2-double cyclic code and r − deg(l(x)) < s− deg(a(x)),
then we get the same result as Theorem 3.10 (as in that case instead of b(x) |
L(x)− l(x) we get L(x) = l(x)).

We have the following result from [6].

Proposition 3.12 ([6], Proposition 7). Let C = ⟨(b(x) | 0), (l(x) | a(x))⟩ be
a separable Z2-double cyclic code. Assume that the generator polynomials of
C satisfy the conditions (1), (2) and (3) in Proposition 2.2. Then l(x) = 0.

Moreover, C⊥ is a separable Z2-double cyclic code such that C⊥ = ⟨
(
xr−1
b∗(x) |

0
)
,
(
0 | xs−1

a∗(x) )
)
⟩.

Proposition 3.13. Let C be a separable Z2-double cyclic code C such that
the generator polynomials of C satisfy the conditions of Proposition 2.2. Then
C = ⟨(b(x) | 0), (0 | a(x))⟩. We have CR is separable and CR = ⟨(b∗(x) |
0), (0 | a∗(x))⟩. Moreover, C is reversible if and only if b(x) and a(x) are
self-reciprocal, i.e., b∗(x) = b(x) and a∗(x) = a(x).
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4. Relation to LCD Z2-double-cyclic codes

Let C be a Z2-double cyclic code of length n = r + s. Then its dual C⊥

is also a Z2-double cyclic code. A linear complementary dual Z2-double cyclic
code is defined as follows.

Definition. A Z2-double cyclic code C is said to be a linear complementary
dual Z2-double cyclic code if C ∩ C⊥ = {0}.

For cyclic codes over Fq, we have the following result:

Proposition 4.1 ([32]). A q-ary cyclic code, whose length n is relatively prime
to the characteristic p of Fq, is an LCD code if and only if it is a reversible
code.

Such a result doesn’t hold in the case of non-separable Z2-double cyclic
codes, as can be seen from the following examples.

Example 4.2. Let r = 4, s = 3, b(x) = (x+1)2, a(x) = x2+x+1, l(x) = x+1.
Then n = r + s = 7 is relatively prime to 2, and

C= {(0, 0, 0, 0 | 0, 0, 0), (1, 1, 0, 0 | 1, 1, 1), (0, 1, 0, 1 | 0, 0, 0), (1, 0, 0, 1 | 1, 1, 1),
(1, 0, 1, 0 | 0, 0, 0), (0, 1, 1, 0 | 1, 1, 1), (1, 1, 1, 1 | 0, 0, 0), (0, 0, 1, 1 | 1, 1, 1)},

C⊥= {(0, 0, 0, 0 | 0, 0, 0), (0, 0, 0, 0 | 0, 1, 1), (0, 0, 0, 0 | 1, 0, 1), (0, 0, 0, 0 | 1, 1, 0),
(0, 1, 0, 1 | 0, 0, 1), (0, 1, 0, 1 | 0, 1, 0), (0, 1, 0, 1 | 1, 0, 0), (0, 1, 0, 1 | 1, 1, 1),
(1, 0, 1, 0 | 0, 0, 1), (1, 0, 1, 0 | 0, 1, 0), (1, 0, 1, 0 | 1, 0, 0), (1, 0, 1, 0 | 1, 1, 1),
(1, 1, 1, 1 | 0, 0, 0), (1, 1, 1, 1 | 0, 1, 1), (1, 1, 1, 1 | 1, 0, 1), (1, 1, 1, 1 | 1, 1, 0)}.

Here C is a reversible Z2-double cyclic code but C ∩ C⊥ ̸= {0}.

Example 4.3. Let r = s = 3. Let b(x) = x + 1, a(x) = x2 + x + 1, l(x) = 1.
Here r and s are both relatively prime to 2. We have

C = {(0, 0, 0 | 0, 0, 0), (1, 0, 0 | 1, 1, 1), (0, 1, 1 | 0, 0, 0), (1, 1, 1 | 1, 1, 1),
(1, 1, 0 | 0, 0, 0), (0, 1, 0 | 1, 1, 1), (1, 0, 1 | 0, 0, 0), (0, 0, 1 | 1, 1, 1)},

C⊥ = {(0, 0, 0 | 0, 0, 0), (0, 0, 0 | 0, 1, 1), (0, 0, 0 | 1, 0, 1), (0, 0, 0 | 1, 1, 0),
(1, 1, 1 | 0, 0, 1), (1, 1, 1 | 0, 1, 0), (1, 1, 1 | 1, 0, 0), (1, 1, 1 | 1, 1, 1)}.

Thus, C is a reversible Z2-double cyclic code but C ∩ C⊥ ̸= {0}.

Example 4.4. Let r = s = 5. Let b(x) = x4 + x3 + x2 + x + 1, a(x) =
x+ 1, l(x) = 1. Here r and s are both relatively prime to 2. C has Z2-basis

{(1, 1, 1, 1, 1 | 0, 0, 0, 0, 0), (1, 0, 0, 0, 0 | 1, 1, 0, 0, 0), (0, 1, 0, 0, 0 | 0, 1, 1, 0, 0),
(0, 0, 1, 0, 0 | 0, 0, 1, 1, 0), (0, 0, 0, 1, 0 | 0, 0, 0, 1, 1)}.

It can be checked that C is not reversible but C ∩ C⊥ = {0}, i.e., C is a LCD
Z2-double cyclic code.
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Example 4.5. Let r = 6, s = 3, b(x) = x2 + x+ 1, l(x) = x, a(x) = 1. Then
n = r + s = 9 is relatively prime to 2, and C has Z2-basis

{(1, 1, 1, 0, 0, 0 | 0, 0, 0), (0, 1, 1, 1, 0, 0 | 0, 0, 0),
(0, 0, 1, 1, 1, 0 | 0, 0, 0), (0, 0, 0, 1, 1, 1 | 0, 0, 0), (0, 1, 0, 0, 0, 0 | 1, 0, 0),
(0, 0, 1, 0, 0, 0 | 0, 1, 0), (0, 0, 0, 1, 0, 0 | 0, 0, 1)}.

It can be checked that C is not reversible but C ∩ C⊥ = {0}, i.e., C is a LCD
Z2-double cyclic code.

4.1. For C separable

Recall that a Z2-double cyclic code C is separable if C is the direct product
of Cr and Cs. We have b̄(x) = xr−1

b∗(x) and ā(x) = xs−1
a∗(x) .

Using the ideas of the paper [32], we have the following conditions for a
separable Z2-double cyclic code to have complementary dual.

Lemma 4.6. Let C = ⟨(b(x) | 0), (0 | a(x))⟩ be a separable Z2-double cyclic
code of length n = r + s. Assume that the generator polynomials of C satisfy
the conditions of Proposition 2.2. Then C is a LCD Z2-double cyclic code if
and only if gcd(b(x), b̄(x)) = 1 and gcd(a(x), ā(x)) = 1.

Proof. Since C is separable, we have C = Cr × Cs and C⊥ = C⊥
r × C⊥

s .
Also, the components of C and C⊥ have the form Cr = ⟨b(x)⟩, Cs = ⟨a(x)⟩,
C⊥

r = ⟨b̄(x)⟩ and C⊥
s = ⟨ā(x)⟩. Therefore, Cr ∩ C⊥

r = ⟨lcm(b(x), b̄(x))⟩ and
Cs ∩ C⊥

s = ⟨lcm(a(x), ā(x))⟩.
Now, C∩C⊥ = (Cr∩C⊥

r )× (Cs∩C⊥
s ). Therefore, C∩C⊥ = {0} if and only

if Cr ∩C⊥
r = {0} and Cs ∩C⊥

s = {0}. We note that Cr ∩C⊥
r = {0} if and only

if lcm(b(x), b̄(x)) = xr − 1 and Cs ∩ C⊥
s = {0} if and only if lcm(a(x), ā(x)) =

xs − 1. But xr − 1 is divisible by b(x) and b̄(x), and deg(b̄(x)) = r− deg(b(x)).
Therefore, lcm(b(x), b̄(x)) = xr − 1 if and only if gcd(b(x), b̄(x)) = 1. Similarly,
lcm(a(x), ā(x)) = xs − 1 if and only if gcd(a(x), ā(x)) = 1. □

Theorem 4.7. Let C be a separable Z2-double cyclic code of length n = r+ s.
Assume that the generator polynomials of C satisfy the conditions of Proposi-
tion 2.2. Then C is a LCD code if and only if b(x) and a(x) are self-reciprocal
(i.e., b∗(x) = b(x) and a∗(x) = a(x)) and all the monic irreducible factors
of b(x) have the same multiplicity in b(x) and in xr − 1 and all the monic
irreducible factors of a(x) have the same multiplicity in a(x) and in xs − 1.

Proof. Let r = r̃ · 2e and s = s̃ · 2f where e ≥ 0, f ≥ 0 and gcd(2, r̃) = 1,
gcd(2, s̃) = 1. First, suppose that C is a LCD code. Then by Lemma 4.6, we
have gcd(b(x), b̄(x)) = 1 and gcd(a(x), ā(x)) = 1. Thus, from

(1) xr − 1 = b(x)(b̄(x))∗ = b∗(x)b̄(x),

it follows that b(x) must divide b∗(x). Thus, b∗(x) = b(x), i.e., b(x) is self-
reciprocal. Also, gcd(b(x), b̄(x)) = 1 implies that gcd(b∗(x), b̄(x)) = 1 which
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further implies that gcd(b(x), (b̄(x))∗) = 1. Because

(2) xr − 1 = b(x)(b̄(x))∗ = (xr̃ − 1)2
e

,

it follows that all the irreducible factors of b(x) must have multiplicity 2e.
Similarly, a(x) is self-reciprocal and all the monic irreducible factors of a(x)
have the same multiplicity in a(x) and in xs − 1.

Conversely, suppose first that one of b(x) or a(x) is not self-reciprocal. With-
out loss of generality, suppose that b(x) is not self-reciprocal, i.e., b(x) does not
divide b∗(x). It follows then from (1) that gcd(b(x), b̄(x)) ̸= 1 and hence, by
Lemma 4.6, it follows that C is not a LCD code.

Finally, suppose that b(x) and a(x) are self-reciprocal but some monic ir-
reducible factor of b(x) or a(x) has multiplicity less than 2e and 2f , respec-
tively. The assumption b(x) and a(x) are self-reciprocal implies b̄(x) and ā(x)
are self-reciprocal. Without loss of generality, assume that some monic ir-
reducible factor of b(x) has multiplicity less than 2e. From (2), we have
1 ̸= gcd(b(x), (b̄(x))∗) = gcd(b(x), b̄(x)), and hence by Lemma 4.6, C is not
a LCD code. □

Thus, we get the following analogy between reversible Z2-double cyclic code
and LCD Z2-double cyclic code for the separable case.

Corollary 4.8. Let C be a separable Z2-double cyclic code of length n = r+ s.
Assume that the generator polynomials of C satisfy the conditions in Proposi-
tion 2.2. If r and s are odd positive integers, then C is a LCD code if and only
if it is a reversible Z2-double cyclic code.

5. Examples

In the following tables, we list several examples of non-trivial reversible Z2-
double cyclic codes of length n = r + s ≤ 10 where r, s ≥ 2.

[r, s] b(x) a(x) l(x)

[2, 2] 1 1, x + 1, x2 + 1 0
x + 1 1, x + 1 0, 1

x + 1 x2 + 1 0

x2 + 1 1 0, 1, x, x + 1

x2 + 1 x + 1 0, x + 1

[3, 2] 1 1, x + 1, x2 + 1 0
x + 1 1, x + 1 0, 1

x + 1 x2 + 1 0

x2 + x + 1 1, x + 1, x2 + 1 0

x3 + 1 1, x + 1 0, x2 + x + 1

[2, 3] 1 1, x+1, x2+x+1, x3+1 0

x + 1 1, x2 + x + 1 0, 1

x + 1 x + 1, x3 + 1 0

x2 + 1 1, x2 + x + 1 0, x + 1

x2 + 1 x + 1 0

[2, 4] 1 1, x + 1, x2 + 1, (x +

1)3, (x + 1)4
0

x + 1 1, x+1, x2 +1, (x+1)3 0, 1

x + 1 (x + 1)4 0

x2 + 1 1, x2 + 1 0, 1, x, x + 1

x2 + 1 x + 1, (x + 1)3 0, x + 1
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[4, 2] 1 1, x + 1, x2 + 1 0
x + 1 1, x + 1 0, 1

x + 1 x2 + 1 0

x2 + 1 1 0, 1, x, x + 1

x2 + 1 x + 1 0, x + 1

x2 + 1 x2 + 1 0

(x + 1)3 1, x + 1 0, x2 + 1

(x + 1)3 x2 + 1 0

x4 + 1 1 0, x2 + 1, x(x2 + 1), (x + 1)3

x4 + 1 x + 1 0, (x + 1)3

[3, 3] 1 1, x+1, x2 +x+1, x3 +1 0

x + 1 1, x2 + x + 1 0, 1

x + 1 x + 1, x3 + 1 0

x2 + x + 1 1 0, 1

x2 + x + 1 x + 1 0, x + 1

x2 + x + 1 x2 + x + 1, x3 + 1 0

x3 + 1 1 0, 1, x2 + x, x2 + x + 1

x3 + 1 x + 1 0, x + 1

x3 + 1 x2 + x + 1 0, x2 + x + 1

[2, 5] 1 1, x + 1, x4 + x3 + x2 +
x + 1

0

x5 + 1

x + 1 1, x4 + x3 + x2 + x + 1 0, 1

x + 1 x + 1, x5 + 1 0

x2 + 1 1, x4 + x3 + x2 + x + 1 0, x + 1

x2 + 1 x + 1 0

[5, 2] 1 1, x + 1, x2 + 1 0
x + 1 1, x + 1 0, 1

x + 1 x2 + 1 0

x4 + x3 + x2 + x + 1 1, x + 1, x2 + 1 0

x5 + 1 1, x + 1 0, x4 + x3 + x2 + x + 1

[3, 4] 1 1, x+1, x2+1, (x+1)3, 0

(x + 1)4

x + 1 1, x+1, x2 +1, (x+1)3, 0, 1

x + 1 (x + 1)4 0

x2 + x + 1 1, x + 1, x2 + 1, (x +

1)3, (x + 1)4
0

x3 + 1 1, x+ 1, x2 + 1, (x+ 1)3 0, x2 + x + 1

[4, 3] 1 1, x+1, x2+x+1, x3+1 0

x + 1 1, x2 + x + 1 0, 1

x + 1 x + 1, x3 + 1 0

x2 + 1 1, x2 + x + 1 0, x + 1

x2 + 1 x + 1, x3 + 1 0

(x + 1)3 1, x2 + x + 1 0, x2 + 1

(x + 1)3 x + 1, x3 + 1 0

(x + 1)4 1, x2 + x + 1 0, (x + 1)3

(x + 1)4 x + 1 0

[2, 6] 1 1, x+1, x2 +1, x2 +x+

1, x3 + 1,

0

(x2+x+1)2, (x+1)(x2+

x + 1)2,

(x+1)2(x2+x+1), x6+1

x + 1 1, x + 1, x2 + x + 1 0, 1

(x2+x+1)2, x3+1, (x+

1)(x2 + x + 1)2

x + 1 x2 +1, (x+1)2(x2 + x+

1), x6 + 1

0

x2 + 1 1, x2+x+1, (x2+x+1)2 0, 1, x, x + 1

x2 + 1 x+1, x3+1, (x+1)(x2+

x + 1)2
0, x + 1

x2 + 1 x2+1, (x+1)2(x2+x+1) 0

[3, 5] 1 1, x + 1, x4 + x3 + x2 +

x + 1, x5 + 1

0

x + 1 1, x4 + x3 + x2 + x + 1 0, 1

x + 1 x + 1, x5 + 1 0
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x2 + x + 1 1, x + 1, x4 + x3 + x2 +

x + 1, x5 + 1

0

x3 + 1 1, x4 + x3 + x2 + x + 1 0, x2 + x + 1

x3 + 1 x + 1 0

[4, 4] 1 1, x+1, x2+1, (x+1)3, 0

(x + 1)4

x + 1 1, x+1, x2 +1, (x+1)3 0, 1

x + 1 (x + 1)4 0

x2 + 1 1, x2 + 1 0, 1, x, x + 1

x2 + 1 x + 1, (x + 1)3 0, x + 1

x2 + 1 (x + 1)4 0

(x + 1)3 1 0, 1, x2, x2 + 1

(x + 1)3 x + 1 0, x + 1, x2 + 1, x2 + x

(x + 1)3 x2 + 1, (x + 1)3 0, x2 + 1

(x + 1)3 (x + 1)4 0

(x + 1)4 1 0, 1, x2, x3 + x, x3 + x + 1,

x3 + x2 + x, x3 + x2 + x + 1

x2 + 1

(x + 1)4 x + 1 0, x + 1, x3 + x2,

x3 + x2 + x + 1

(x + 1)4 x2 + 1 0, x2 + 1, x3 + x,

x3 + x2 + x + 1

(x + 1)4 (x + 1)3 0, (x + 1)3

[5, 3] 1 1, x+1, x2+x+1, x3+1 0

x + 1 1, x2 + x + 1 0, 1

x + 1 x + 1, x3 + 1 0

x4 + x3 + x2 + x + 1 1, x+1, x2+x+1, x3+1 0

x5 + 1 1, x2 + x + 1 0, x4 + x3 + x2 + x + 1

x5 + 1 x + 1 0

[6, 2] 1 1, x + 1, x2 + 1 0
x + 1 1, x + 1 0, 1

x + 1 x2 + 1 0

x2 + 1 1 0, 1, x, x + 1

x2 + 1 x + 1 0, x + 1

x2 + 1 x2 + 1 0

x2 + x + 1 1, x + 1, x2 + 1 0

(x2 + x + 1)2 1, x + 1, x2 + 1 0

x3 + 1 1, x + 1 0, x2 + x + 1

x3 + 1 x2 + 1 0

(x + 1)2(x2 + x + 1) 1 0, x2+x+1, x3+x2+x, x3+1

(x + 1)2(x2 + x + 1) x + 1 0, x3 + 1

(x + 1)2(x2 + x + 1) x2 + 1 0

(x + 1)(x2 + x + 1)2 1, x + 1 0, (x2 + x + 1)2

(x + 1)(x2 + x + 1)2 x2 + 1 0

x6 + 1 1 0, (x2 +x+1)2, x(x2 +x+1)2,

(x + 1)(x2 + x + 1)2

x6 + 1 x + 1 0, (x + 1)(x2 + x + 1)2

[2, 7] 1 1, x + 1, x7 + 1, 0

x6 + x5 + x4 + x3 + x2 +
x + 1

x + 1 1, x6+x5+x4+x3+x2+
x + 1

0, 1

x + 1 x + 1, x7 + 1 0

x2 + 1 1, x6+x5+x4+x3+x2+
x + 1

0, x + 1

x2 + 1 x + 1 0

[3, 6] 1 1, x+1, x2+1, x2+x+1, 0

(x2+x+1)2, (x+1)2(x2+
x + 1),

x3 + 1, (x + 1)(x2 + x +

1)2, x6 + 1

x + 1 1, x+1, x2+x+1, x3+1 0, 1

(x2+x+1)2, (x+1)(x2+

x + 1)2

x + 1 x2 +1, (x+1)2(x2 + x+

1), x6 + 1

0
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x2 + x + 1 1, x3 + 1 0, 1

x2 + x + 1 x+1, (x+1)2(x2+x+1) 0, x + 1

x2 + x + 1 x2 + 1, x2 + x + 1 0, x

x2 + x + 1 (x2+x+1)2, (x+1)(x2+

x + 1)2
0

x6 + 1

x3 + 1 1, x3 + 1 0, 1, x2 + x, x2 + x + 1

x3 + 1 x + 1 0, x + 1, x2, x2 + x + 1

x3 + 1 x2 + 1 0, x2 + 1

x3 + 1 x2 + x + 1 0, x, x2 + 1, x2 + x + 1

x3 + 1 (x2 + x + 1)2 0, x2 + x + 1

x3 + 1 (x + 1)2(x2 + x + 1) 0, x + 1

x3 + 1 (x + 1)(x2 + x + 1)2 0, x2 + x + 1

[4, 5] 1 1, x + 1, x5 + 1 0

x4 + x3 + x2 + x + 1

x + 1 1, x4 + x3 + x2 + x + 1 0, 1

x + 1 x + 1, x5 + 1 0

x2 + 1 1, x4 + x3 + x2 + x + 1 0, x + 1

x2 + 1 x + 1, x5 + 1 0

(x + 1)3 1, x4 + x3 + x2 + x + 1 0, x2 + 1

(x + 1)3 x + 1, x5 + 1 0

(x + 1)4 1, x4 + x3 + x2 + x + 1 0, (x + 1)3

(x + 1)4 x + 1 0

[5, 4] 1 1, x + 1, x2 + 1 0

(x + 1)3, (x + 1)4

x + 1 1, x+1, x2 +1, (x+1)3 0, 1

x + 1 (x + 1)4 0

x4 + x3 + x2 + x + 1 1, x + 1, x2 + 1 0

(x + 1)3, (x + 1)4

x5 + 1 1, x+1, x2 +1, (x+1)3 0, x4 + x3 + x2 + x + 1

[6, 3] 1 1, x+1, x2+x+1, x3+1 0

x + 1 1, x2 + x + 1 0, 1

x + 1 x + 1, x3 + 1 0

x2 + 1 1, x2 + x + 1 0, x + 1

x2 + 1 x + 1, x3 + 1 0

x2 + x + 1 1 0, 1

x2 + x + 1 x + 1 0, x + 1

x2 + x + 1 x2 + x + 1, x3 + 1 0

(x2 + x + 1)2 1 0, x3 + 1

(x2 + x + 1)2 x + 1 0, x(x2 + x + 1),

(x2 + x + 1)2 x2 + x + 1, x3 + 1 0

x3 + 1 1 0, 1, x2 + x, x2 + x + 1

x3 + 1 x + 1 0, x + 1

x3 + 1 x2 + x + 1 0, x2 + x + 1

x3 + 1 x3 + 1 0

(x + 1)2(x2 + x + 1) 1 0, x2 + x, (x + 1)3,

x3 + 1

(x + 1)2(x2 + x + 1) x + 1 0, x3 + x

(x + 1)2(x2 + x + 1) x2 + x + 1 0, x3 + 1

(x + 1)2(x2 + x + 1) x3 + 1 0

(x + 1)(x2 + x + 1)2 1 0, x3 + 1, x2(x2 + x + 1),

(x2 + x + 1)2

(x + 1)(x2 + x + 1)2 x + 1 0, (x + 1)2(x2 + x + 1)

(x + 1)(x2 + x + 1)2 x2 + x + 1 0, (x2 + x + 1)2

(x + 1)(x2 + x + 1)2 x3 + 1 0

x6 + 1 1 0, x3 + 1,

x(x + 1)2(x2 + x + 1),

(x + 1)(x2 + x + 1)2

x6 + 1 x + 1 0, (x + 1)2(x2 + x + 1)

x6 + 1 x2 + x + 1 0, (x + 1)(x2 + x + 1)2

[7, 2] 1 1, x + 1, x2 + 1 0
x + 1 1, x + 1 0, 1

x + 1 x2 + 1 0

(x3 +x+1)(x3 +x2 +1) 1, x + 1, x2 + 1 0

x7 + 1 1, x + 1 0, (x3 + x + 1)(x3 + x2 + 1)

[2, 8] 1 (x + 1)i, 0 ≤ i ≤ 8 0
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x + 1 (x + 1)i, 0 ≤ i ≤ 7 0, 1

x + 1 (x + 1)8 0

x2 + 1 1, x2 + 1, (x+ 1)4, (x+

1)6
0, 1, x, x + 1

x2 + 1 x + 1, (x + 1)3, (x +

1)5, (x + 1)7
0, x + 1

[3, 7] 1 1, x + 1, x7 + 1 0

(x3 + x + 1)(x3 + x2 + 1)

x + 1 1, (x3+x+1)(x3+x2+1) 0, 1

x + 1 x + 1, x7 + 1 0

x2 + x + 1 1, x + 1, x7 + 1 0

(x3 + x + 1)(x3 + x2 + 1)

x3 + 1 1, (x3+x+1)(x3+x2+1) 0, x2 + x + 1

x3 + 1 x + 1 0

[4, 6] 1 1, x+1, x2+x+1, x2+1 0

(x2+x+1)2, (x+1)(x2+

x + 1)2

(x+1)2(x2+x+1), x3+

1, x6 + 1

x + 1 1, x + 1, x2 + x + 1 0, 1

(x2 + x + 1)2, x3 + 1,

(x + 1)(x2 + x + 1)2

x + 1 x2+1, (x+1)2(x2+x+1) 0

x6 + 1

x2 + 1 1, x2+x+1, (x2+x+1)2 0, 1, x, x + 1

x2 + 1 x+1, x3+1, (x+1)(x2+

x + 1)2
0, x + 1

x2 + 1 x2 +1, (x+1)2(x2 + x+

1), x6 + 1

0

(x + 1)3 1, x+1, (x+1)2(x2+x+
1),

0, x2 + 1

(x2 + x + 1)2, x3 + 1,

x2 + x + 1, (x + 1)(x2 +

x + 1)2

(x + 1)3 x2 + 1, x6 + 1 0

(x + 1)4 1, x2+x+1, (x2+x+1)2 0, x2 + 1, x(x2 + 1), (x + 1)3

(x + 1)4 x + 1, x3 + 1, 0, (x + 1)3

(x + 1)(x2 + x + 1)2

(x + 1)4 x2+1, (x+1)2(x2+x+1) 0

[5, 5] 1 1, x + 1, x5 + 1 0

x4 + x3 + x2 + x + 1

x + 1 1, x4 + x3 + x2 + x + 1 0, 1

x + 1 x + 1, x5 + 1 0

x4 + x3 + x2 + x + 1 1 0, 1, x3 + x2, x3 + x2 + 1

x4 + x3 + x2 + x + 1 x + 1 0, x + 1, x3, x3 + x + 1

x4 + x3 + x2 + x + 1 x4+x3+x2+x+1, x5+1 0

x5 + 1 1 0, 1, x3 + x2, x3 + x2 + 1,

x4 + x, x4 + x + 1,

x4 + x3 + x2 + x

x4 + x3 + x2 + x + 1

x5 + 1 x + 1 0, x + 1, x2(x + 1)2,

x4 + x2 + x + 1

x5 + 1 x4 + x3 + x2 + x + 1 0, x4 + x3 + x2 + x + 1

[6, 4] 1 (x + 1)i, 0 ≤ i ≤ 4 0

x + 1 (x + 1)i, 0 ≤ i ≤ 3 0, 1

x + 1 (x + 1)4 0

x2 + 1 1, x2 + 1 0, 1, x, x + 1

x2 + 1 x + 1, (x + 1)3 0, x + 1

x2 + 1 (x + 1)4 0

x2 +x+1, (x2 +x+1)2 (x + 1)i, 0 ≤ i ≤ 4 0

x3 + 1 (x + 1)i, 0 ≤ i ≤ 3 0, x2 + x + 1

x3 + 1 (x + 1)4 0

(x + 1)2(x2 + x + 1) 1, x2 + 1 0, x2 + x + 1, x(x2 + x + 1),

x3 + 1

(x + 1)2(x2 + x + 1) x + 1, (x + 1)3 0, x3 + 1

(x + 1)2(x2 + x + 1) (x + 1)4 0
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(x + 1)(x2 + x + 1)2 (x + 1)i, 0 ≤ i ≤ 3 0, (x2 + x + 1)2

(x + 1)(x2 + x + 1)2 (x + 1)4 0

x6 + 1 1, x2 + 1 0, (x2 +x+1)2, x(x2 +x+1)2,

(x + 1)(x2 + x + 1)2

x6 + 1 x + 1, (x + 1)3 0, (x + 1)(x2 + x + 1)2

[7, 3] 1 1, x+1, x2+x+1, x3+1 0

x + 1 1, x2 + x + 1 0, 1

x + 1 x + 1, x3 + 1 0

(x3 +x+1)(x3 +x2 +1) 1, x+1, x2+x+1, x3+1 0

x7 + 1 1, x2 + x + 1 0

x6 + x5 + x4 + x3 + x2 + x + 1

x7 + 1 x + 1 0

[8, 2] 1 1, x + 1, x2 + 1 0
x + 1 1, x + 1 0, 1

x + 1 x2 + 1 0

x2 + 1 1 0, 1, x, x + 1

x2 + 1 x + 1 0, x + 1

x2 + 1 x2 + 1 0

(x + 1)3 1, x + 1 0, x2 + 1

(x + 1)3 x2 + 1 0

(x + 1)4 1 0, x2 + 1, x(x2 + 1), (x + 1)3

(x + 1)4 x + 1 0, (x + 1)3

(x + 1)4 x2 + 1 0

(x + 1)5 1, x + 1 0, (x + 1)4

(x + 1)5 x2 + 1 0

(x + 1)6 1 0, (x+1)4, x(x+1)4, (x+1)5

(x + 1)6 x + 1 0, (x + 1)5

(x + 1)6 x2 + 1 0

(x + 1)7 1, x + 1 0, (x + 1)6

(x + 1)7 x2 + 1 0

(x + 1)8 1 0, (x+1)6, x(x+1)6, (x+1)7

(x + 1)8 x + 1 0, (x + 1)7

6. Conclusion

In this note, we have given necessary and sufficient conditions for a Z2-
double cyclic code to be reversible. We have also shown a relation between
LCD Z2-double cyclic codes and reversible Z2-double cyclic codes, in case the
code is separable. For non-separable codes, we have given a few examples
demonstrating that the relation between LCD and reversible codes, which hold
for cyclic codes, doesn’t hold for Z2-double cyclic codes. We also listed several
examples of reversible Z2-double cyclic codes.
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[16] C. Güneri, F. Özbudak, B. Özkaya, E. Saçıkara, Z. Sepasdar, and P. Solé, Structure and
performance of generalized quasi-cyclic codes, Finite Fields Appl. 47 (2017), 183–202.

https://doi.org/10.1016/j.ffa.2017.06.005

[17] H. Islam and O. Prakash, Construction of reversible cyclic codes over Zpk , J. Discrete

Math. Sci. Cryptography. https://doi.org/10.1080/09720529.2020.1815341
[18] A. S. Karbaski, T. Abualrub, and S. T. Dougherty, Double quadratic residue codes and

self-dual double cyclic codes, Appl. Algebra Engrg. Comm. Comput. 33 (2022), no. 2,

91–115. https://doi.org/10.1007/s00200-020-00437-9
[19] J. Kaur, R. Sehmi, and S. Dutt, Reversible complement cyclic codes over Galois rings

with application to DNA codes, Discrete Appl. Math. 280 (2020), 162–170. https://

doi.org/10.1016/j.dam.2020.01.004

[20] S. Li, C. Ding, and H. Liu, A family of reversible BCH codes, preprint arXiv:1608.

02169v1 [cs.IT].

[21] J. L. Massey, Reversible codes, Information and Control 7 (1964), 369–380.
[22] H. Mostafanasab, Triple cyclic codes over Z2, Palest. J. Math. 6 (2017), Special Issue

II, 123–134.
[23] S. K. Muttoo and S. Lal, A reversible code over GF(q), Kybernetika (Prague) 22 (1986),

no. 1, 85–91.

[24] E. S. Oztas, B. Yildiz, and I. Siap, A novel approach for constructing reversible codes
and applications to DNA codes over the ring F2[u]/(u2k − 1), Finite Fields Appl. 46

(2017), 217–234. https://doi.org/10.1016/j.ffa.2017.04.001

[25] B. Pang, S. Zhu, and Z. Sun, On LCD negacyclic codes over finite fields, J. Syst. Sci.
Complex. 31 (2018), no. 4, 1065–1077. https://doi.org/10.1007/s11424-017-6301-7

[26] N. Patanker and S. K. Singh, Weight distribution of a subclass of Z2-double cyclic codes,

Finite Fields Appl. 57 (2019), 287–308. https://doi.org/10.1016/j.ffa.2019.03.003

https://doi.org/10.1007/s10623-017-0334-8
https://doi.org/10.1007/s10623-010-9417-5
https://doi.org/10.1007/s10623-010-9417-5
https://doi.org/10.1109/TIT.2004.831789
https://doi.org/10.1109/TIT.2004.831789
https://doi.org/10.1016/j.ffa.2022.102079
https://doi.org/10.1016/j.ffa.2022.102079
https://doi.org/10.1007/s00200-009-0095-3
https://doi.org/10.1007/s00200-009-0095-3
https://doi.org/10.1007/s00200-017-0315-1
https://doi.org/10.1016/j.ffa.2016.02.003
https://doi.org/10.1016/j.ffa.2017.06.005
https://doi.org/10.1080/09720529.2020.1815341
https://doi.org/10.1007/s00200-020-00437-9
https://doi.org/10.1016/j.dam.2020.01.004
https://doi.org/10.1016/j.dam.2020.01.004
https://doi.org/10.1016/j.ffa.2017.04.001
https://doi.org/10.1007/s11424-017-6301-7
https://doi.org/10.1016/j.ffa.2019.03.003


460 N. PATANKER

[27] O. Prakash, S. Patel, and S. Yadav, Reversible cyclic codes over some finite rings and

their application to DNA codes, Comput. Appl. Math. 40 (2021), no. 7, Paper No. 242,

17 pp. https://doi.org/10.1007/s40314-021-01635-y
[28] I. Siap and N. Kulhan, The structure of generalized quasi cyclic codes, Appl. Math.

E-Notes 5 (2005), 24–30.
[29] B. Srinivasulu and M. Bhaintwal, Z2-triple cyclic codes and their duals, Eur. J. Pure

Appl. Math. 10 (2017), no. 2, 392–409.

[30] K. K. Tzeng and C. R. P. Hartmann, On the minimum distance of certain reversible
cyclic codes, IEEE Trans. Inform. Theory IT-16 (1970), 644–646. https://doi.org/10.

1109/tit.1970.1054517

[31] T. Wu, J. Gao, and F.-W. Fu, 1-generator generalized quasi-cyclic codes over Z4, Cryp-
togr. Commun. 9 (2017), no. 2, 291–299. https://doi.org/10.1007/s12095-015-0175-0

[32] X. Yang and J. L. Massey, The condition for a cyclic code to have a complementary

dual, Discrete Math. 126 (1994), no. 1-3, 391–393. https://doi.org/10.1016/0012-
365X(94)90283-6
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