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PRICING AMERICAN LOOKBACK OPTIONS UNDER

A STOCHASTIC VOLATILITY MODEL

Donghyun Kim, Junhui Woo, and Ji-Hun Yoon

Abstract. In this study, we deal with American lookback option prices

on dividend-paying assets under a stochastic volatility (SV) model. By
using the asymptotic analysis introduced by Fouque et al. [17] and the

Laplace-Carson transform (LCT), we derive the explicit formula for the
option prices and the free boundary values with a finite expiration whose

volatility is driven by a fast mean-reverting Ornstein-Uhlenbeck process.

In addition, we examine the numerical implications of the SV on the
American lookback option with respect to the model parameters and

verify that the obtained explicit analytical option price has been obtained

accurately and efficiently in comparison with the price obtained from the
Monte-Carlo simulation.

1. Introduction

Even though the Black-Scholes model has been widely used for pricing and
hedging financial derivatives because of its theoretical simplicity and practical
usefulness, it is well known that the assumption of a standard Black-Scholes
model [3] for underlying asset prices do not reflect the empirical evidence in
the financial market. Actually, the assumption of the Black-Scholes model is
in flat implied volatilities, which is inconsistent with empirical results verify-
ing that the implied volatilities of the equity options display the smile or skew
phenomenon. Before the 1987 crash, the curve of implied volatilities against
the strike price was occasionally found to have U-shape with minimum at or
near the money but, after the crash, the typical geometry of implied volatili-
ties appeared in the form of the smile. Another one among the assumption of
the Black-Scholes model is that the stock price has a log-normal distribution.
However, in the real market, there are some excess skewness and leptokurtosis
as the properties of the risk-neutral probability distribution in contrast to the
log-normal distribution. Therefore, reflecting these empirical features in the
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real market, it became necessary to develop another model. Stochastic volatil-
ity models have become useful for derivative pricing and hedging for dozens
of years since the existence of a nonflat implied volatility surface has been no-
ticed and become more pronounced. In particular, many exogenous variables
and extraordinary volatility behaviors have exerted a significant effect on the
market after the global financial crisis in 2007-2008, as seen in Choi et al. [6].
Hence, participants in financial transactions have begun to pay attention to
the models that can predict the movement of financial assets. So, considering
that the volatility of an underlying asset follows an exogenous stochastic pro-
cess after the financial crisis in 2007-2008, (pure) stochastic volatility SV model
are considerably more popular for describing their dynamics and reflecting real
situations in financial markets. The Heston model (cf. Heston [20]) and the
fast mean-reverting SV model introduced by Fouque et al. [17] have become
representative SV models, which are designed to capture the phenomenon of
the mean-reversion of volatility in the financial market. Agarwal et al. [2] uti-
lized the maturity randomization method to approximate the American option
price under SV models, whose volatility process is characterized by fast- and
slow-scale mean-reverting factors, and Zhu and Chen [37] investigated the an-
alytic formulas for perpetual American options under a SV environment with
a fast-mean-reverting process.

Lookback options are a type of exotic options with path dependency, where
option payoff depends on the maximum or minimum value of the underlying
asset during the contract’s lifetime. Generally, lookback options are sorted by
whether the strike price is a maximum (or minimum) variable process, or a fixed
constant for the floating or fixed strike options. In both cases, it is difficult
to forecast the pricing of the lookback options as the option price at any time
relies on the path from the underlying asset, as well as the underlying asset at
that point. There have been many studies on the analytic valuation of look-
back options using the Black-Scholes or SV frameworks, or the structures of the
model dynamics reflecting some default risks. Most importantly, analytic for-
mulas for floating-strike and fixed-strike lookback options have been introduced
by Goldman et al. [19] and Conze and Viswanathan [8] in the Black-Scholes
settings. Dai et al. [12] found an explicit closed solution for Quanto lookback
options. In addition, Wong and Kwok [34] utilized a new technique for a sub-
replicating portfolio and the corresponding replenishing strategy to calculate
multistate lookback option values more effectively and easily and demonstrated
the relationship between fixed and floating lookback options. Leung [29] used
the homotopy analysis technique to obtain an analytical pricing solution for
floating-strike and fixed-strike lookback options based on Heston’s SV model,
and Wong and Chan [33] studied the analytical solutions of lookback options
with a multiscale SV model driven by a fast-mean reverting process and a
slow-varying volatility process. In addition, Lee [28] examined the approxi-
mated solution for the price of the perpetual American lookback option under
the SV model and analyzed the effects of SV on option prices in comparison
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with those under the classical Black-Scholes model. Moreover, Choi et al. [7]
used the Mellin transform and the method using images to derive a closed-form
solution to fixed-strike lookback options with default risk as the model settings
for default risk.

American option is a financial instrument in which the time to maturity is
finite, so that option holders can exercise the option at any time before matu-
rity. In this paper, we discuss the pricing formula for American-style lookback
options with a finite expiration under the SV model driven by the Ornstein-
Uhlenbeck process. The American lookback option is similar to the structure
of the American option, but the difference is that the payoff is determined by
the maximum (or minimum) value until the time the option is exercised. This
article is an extended study of a recent study by Lee [28]. As shown in Lee [28],
in the case of the perpetual American option, the time to maturity is infinite.
Therefore, the differential equation for the value of the perpetual American
option does not include the derivative in terms of time, and the corresponding
problems can be much simpler than deriving the pricing formula for the finite
expiry American option. To the best of our knowledge, there is no explicit
closed-form analytical expression for the formula of the American option or its
associated free boundary value, contrary to the perpetual American option.

Therefore, in this study, to find the analytic solutions for the American
lookback options, we use the Laplace-Carson transform (LCT). Applying the
LCT to PDE problems for the option value, we obtain the closed solutions for
the option prices and the optimal boundary values in the transferred frequency
domain. Subsequently, by exploiting the inversion of the LCT using the Gaver-
Stehfest algorithm, we can find the analytic formulas for the American lookback
options using the SV model.

The LCT, a variant of the regular Laplace transform, is an integral trans-
form and has been used in many fields such as physics and railway engineering.
LCT is a powerful tool for dealing with dynamical systems formulated by ordi-
nary/partial differential equations (PDEs), simplifying complicated problems.
Many studies have addressed financial derivatives on the LCT. Carr [4] in-
troduced the randomization approach that takes into account the LCT of a
fixed maturity barrier maximized over barriers. He focused on LCT and its
applications to price of an American option with random maturity to obtain
semi-explicit solutions for American option prices under the Black-Scholes set-
ting. Kimura [23] derived Russian option prices with finite time horizons using
LCT, and Wong and Zhao [35] utilized LCT to investigate the American op-
tion prices and its free boundary values under the constant elasticity of variance
(CEV) model. In addition, Kimura [26] dealt with the approach of the LCT to
option pricing to value defaultable and non-callable convertible bonds (CBs),
and Kang et al. [21] found an analytic solution for the price of American stran-
gle options by making use of the LCT. They solved the nonlinear system for
the option price using Newton’s method, and finally obtained the optimal free
boundaries and the values of the options using the techniques of numerical
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Laplace inversion. Moreover, Zhou and Wu [36] investigated pricing American
Strangles options with constant elasticity volatility (CEV) models using the
LCT method.

The main contributions of this paper are as follows: Firstly, the stochas-
tic volatility (SV) models have very complicated model structures compared
with the BS model. So, the complex structures of the model dynamics make
it very difficult for us to solve the given PDEs. Actually, we cannot solve the
PDEs directly. Therefore, to resolve this problem, we use asymptotic anal-
ysis on the PDEs to find the anayltic solutions for the option prices, where
the analytic solutions are given by the sum of the leading order term and the
correction order term. Here, to derive the leading order term and the correc-
tion order term for the American lookback options, we exploit Laplace-Carson
transform (LCT) which is very helpful for us to deal with American option
pricing, while Dai and Kwok [10] have just solved the PDEs for American
lookback options numerically. Secondly, to verify the pricing accuracy of the
approximated solutions that we have derived, we implement the Monte-Carlo
simulation. Comparing our analytic form formulas with the solutions obtained
by the Monte-Carlo simulation with respect to the number of simulations, we
demonstrate the usefulness of the option pricing with SV model. Finally, we
investigate the numerical implications of the SV model on the American Look-
back option in terms of several model parameters. We observe the quantitative
and qualitative influences of the correction price on the American lookback
options by examining the fast mean-reverting factor included in SV model. In
other words, the quite interesting and delicate results can be drawn regarding
the effect of the addition of SV to the BS model. It can be seen that the sen-
sitivity of SV has a significant effect on the behaviors of some parameters or
variable.

The remainder of this paper is organized as follows. In Section 2, we con-
struct the underlying asset model under the SV model driven by the fast mean-
reverting Ornstein-Ulenbeck process and formulate the free boundary problems
of American lookback options. Section 3 applies the asymptotic analysis and
LCT to the PDEs for the option price to obtain the approximated closed so-
lutions of the option price and the free boundary value for the derived PDEs.
In Section 4, we analyze the influence of the value of the American lookback
option under SV and investigate the sensitivities of the nature of the SV on the
option price with regard to the model parameters. Moreover, we demonstrate
the price accuracy of the American lookback option using the SV model by
comparing the approximated option price with the Monte Carlo price. Section
5 presents concluding remarks.
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2. Model formulation

2.1. The review of American lookback options: The case of the con-
stant volatility

In this section, first of all, we review briefly the American lookback options
with the constant volatility as shown in Dai and Kwok [10]. If St denote the
price of the underlying asset of the lookback option, then the model dynamics
under the real probability measure P is given by

dSt = (µ− q)Stdt+ f(Yt)StdW
s
t ,

where µ and q are the return rate and dividend rate, respectively, and W s
t

is a standard Brownian motion. By using Girsanov theorem, the stochastic
dynamics of the underlying asset price St follows

dSt = (r − q)Stdt+ f(Yt)StdW
s∗
t ,

under the risk-neutral probability measure P∗, where r is a risk-free interest
rate and W s∗

t is the standard Brownian motion in P∗.
If M is the realized maximum value of the asset price over the lookback

monitoring period, then the no-arbitrage price of the American floating strike
lookback put option is expressed by

P (t, s,m) = sup
ξ∈Γ[t,T ]

E∗[e−r(ξ−t)h1(Sξ,Mξ) |St = s,Mt = m],

where h1(Sξ,Mξ) = Mξ − Sξ is the payoff function, Γ[t, T ] is the set of stop-
ping times ξ in [t, T ], and Mt is the maximum value process defined by Mt =
max0≤τ≤t Sτ .

In order to examine the early exercise boundaries and pricing behaviors of
one-asset American options with lookback payoff, we consider the following
linear complementarity formulation

∂P

∂τ
+ LP > 0, P (t, s,m) > m− s,

(
∂P

∂t
+ LP

)
(P − (m− s)) = 0(1)

with auxiliary conditions

(2)
∂P

∂m

∣∣∣∣
s=m

= 0, P (T, s,m) = m− s, P (t, s∗,m) = m− s∗,
∂P

∂s

∣∣∣∣
s=s∗

= −1,

where m > s > 0, τ = T − t and the operator L is described by

L =
1

2
σ2s2

∂2

∂s2
+ (r − q)s

∂

∂s
− rI.

Since the closed-form solutions for the linear complementarity problem (1)
and (2) do not exist, Dai and Kwok [10] analyzed the optimal exercise policies
and the price impact of Americal lookback options in case of the constant
volatility by solving the optimal boundary problems (1) and (2) numerically.
We can investigate the numerical results from Dai and Kwok [10].
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Based on the stochastic nature of the volatility verified by the empirical stud-
ies for the historical data in the real financial market, in the next subsection,
we are attempting to construct the model dynamics for American lookback
options with stochastic volatility mentioned in Fouque et al. [17]. However, in
our article, the techniques for solving the optimal exercise boundary problems
are quite different from those in Dai and Kwok [10]. To derive the analytic so-
lutions from the given linear complementarity problem numerically, we utilize
Laplace-Carson transform which will present in Subsection 2.3.

2.2. Problem formulation

Next, referring to Fouque et al. [17], this subsection deals with the underly-
ing asset pricing model, in which volatility is driven by a fast mean-reverting
Ornstein-Uhlenbeck (OU) process. Let us consider the value St of the under-
lying asset that follows the stochastic differential equations (SDEs) described
by

(3)
dSt = (µ− q)Stdt+ f(Yt)StdW

s
t ,

dYt = α(θ − Yt)dt+ β dW y
t ,

under a market probability measure P, where µ and q are given by Subsection
2.1, and θ, α, and β are constants. In addition, f is a smooth function with 0 <
c1 ≤ f ≤ c2 < ∞ for some constants c1 and c2 (cf. Karatzas and Shreve [22]),
andW s

t andW y
t are the correlated Brownian motions satisfying d⟨W s,W y⟩t =

ρdt. In addition, we note that Yt mentioned in (3) has a Gaussian process with
a distribution expressed by Yt ∼ N (θ + (Y0 − θ)e−αt, ν2(1 − e−2αt)), where
N (a, b) is defined as a normal distribution with mean a and variance b.

The process Yt is an ergodic process whose the characteristic time gets back
to the mean level of its invariant distribution with N (θ, ν2), where ν = β/

√
2α

denotes the variance of the invariant distribution of Yt. As α increases, pro-
cess Yt in (3) tends to revert to the long-run mean level θ, regardless of the
time. Here, we call α the rate of mean-reversion and model (3) is called the
mean-reverting Ornstein-Uhlenbeck (OU) process because the volatility is a
monotonic function of a process Yt, so that the drift draws it toward the mean
value θ, and then the volatility gets closer to f(θ) approximately. If the mean
reversion rate α goes to infinity, the underlying asset price St approaches the
Black-Scholes model with constant volatility. From empirical stock price ex-
periments based on Standard and Poor’s 500 index in the real financial
market, it can be observed that the volatility of the stock price returns to a
specific mean as shown in Fouque et al. [13] and [14]. According to Fouque et
al. [14], an empirical analysis of high-frequency S&P 500 index data exhibits
that α is in fact large and that ν2 is a stable O(1) constant. Moreover, one can
observe that the volatility of stock prices fluctuates very quickly throughout
the lifetime of financial instruments, verifying volatility is well-modeled as a
fast mean-reverting stochastic process. Thus, from this observation of volatil-
ity, if we introduce a parameter, ϵ, represented by the inverse of the mean
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reversion rate α satisfying ϵ = 1/α, we can assume that the positive parameter
ϵ is assumed to be small such that Yt becomes a fast mean-reverting process.

Now, under an equivalent martingale measure P∗, by using the Girsanov the-
orem, the model dynamics described in (3) can be converted into the following
SDEs:

dSt = (r − q)Stdt+ f(Yt)StdW
s∗

t ,

dYt =

(
1

ϵ
(θ − Yt)−

v
√
2√
ϵ
Λ(Yt)

)
dt+

ν
√
2√
ϵ
dW y∗

t ,

where r > 0 is a risk free interest rate, and the processes W s∗

t and W y∗

t are the
transformed standard Brownian motions under a risk neutral measure P∗, which

satisfy the correlation d⟨W s∗ ,W y∗⟩t = ρdt, where W s∗

t =W s
t +

∫ t

0
µ−r
f(Ys)

ds and

W y∗

t = W y
t +

∫ t

0
γ(Ys)ds, and

(
µ−r
f(Ys)

, γ(Ys)
)

satisfies the Novikov condition.

Here, we assume that γ is a smooth bounded function of y, and Λ(Yt) is the

market price of the volatility risk expressed by Λ(Yt) = ρ µ−r
f(Yt)

+γ(Yt)
√
1− ρ2.

Under the equivalent martingale measure, no-arbitrage pricing theory illus-
trates that option prices are the expectations of discounted payoffs with regard
to a risk-neutral measure. Under the equivalent martingale measure P∗, the
no-arbitrage price of an American lookback put option is described by the
following expectation representation:

(4) P (t, s,m, y) = sup
ξ∈Γ[t,T ]

E∗[e−r(ξ−t)h2(Sξ,Mξ) |St = s,Mt = m,Yt = y],

where h2(Sξ,Mξ) =Mξ − Sξ is the payoff function.
Before we deal with the optimal stopping problem (4), we consider the region

of the optimal points (t, St) for which early exercise before the expiration date
is optimal. If we set D = {(t, s,m, y) | 0 ≤ t < T, 0 < s < m, 0 < y,m < ∞},
then it can be divided into the exercise region E and the continuation region C
defined by

E = {(t, s,m, y) |P (t, s,m, y) = m− s},
C = {(t, s,m, y) |P (t, s,m, y) > m− s},

respectively. Then, there exists a boundary s∗ = s∗(t, y,m) that separates C
from E , which we call the free boundary of an American lookback option, which
is described by

(5) s∗(t, y,m) = inf{s | (t, s,m, y) ∈ C}.

Lemma 2.1. From the point of view of this expression of the early exercise
boundary s∗, we can rewrite the two regions E and C as

E = {(t, s,m, y) | 0 < s ≤ s∗} and C = {(t, s,m, y) | s∗ < s < m},
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respectively. Using a standard theory for the optimal stopping problem stated
in [11], P (t, s,m, y) yields the following variational inequality:

(6)

∂P

∂t
+ LϵP ≤ 0, if P (t, s,m, y) = m− s,

∂P

∂t
+ LϵP = 0, if P (t, s,m, y) > m− s

with one terminal condition P (T, s,m, y) = m−s, and four boundary conditions

(7)
∂P

∂m

∣∣∣∣
s=m

= 0, P (t, s∗,m, y) = m− s∗,
∂P

∂s

∣∣∣∣
s=s∗

= −1,
∂P

∂y

∣∣∣∣
s=s∗

= 0

on the domain D mentioned above, denoting that

• P (t, s∗,m, y) = m− s∗ (matching condition),

• ∂P

∂s

∣∣∣∣
s=s∗

= −1 (smooth pasting condition with respect to s),

• ∂P

∂y

∣∣∣∣
s=s∗

= 0 (smooth pasting condition with respect to y),

where

Lϵ =
1

2
f(y)2s2

∂2

∂s2
+ (r − q)s

∂

∂s
− rI + ρ

ν
√
2√
ϵ
sf(y)

∂2

∂s∂y
+
ν2

ϵ

∂2

∂y2

+

(
1

ϵ
(θ − y)− ν

√
2√
ϵ
Λ(y)

)
∂

∂y
.

Proof. Referring to [11]. □

2.3. Review of Laplace-Carson transform

In this subsection, we present a review of the Laplace-Carson transform
(LCT). The transform plays an important role in dealing with PDE problems
by converting the related partial differential equations (PDEs) into ordinary
differential equations (ODEs). The definition is as follows: for a continuous
real-valued function χ(τ) satisfying |χ(τ)| ≤ AeBτ for constants A and B on a
non-negative real number set R+ ∪ {0}, the LCT of function χ is given by

LC [χ(τ)] (λ) =

∫ +∞

0

λe−λτχ(τ) dτ

for λ ∈ C, and Re(λ) > B. We denote LC [χ(τ)] (λ) = χ∗(λ) for simplic-
ity, and for a random variable X ∼ Exp(λ), the LCT can be expressed as
χ∗(λ) = E[χ(X)]. We briefly describe some of the basic properties of the LCT
in Appendix A.
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3. Price approximation

In this section, we utilize an asymptotic analysis suggested by Fouque et
al. [17] and LCT given in Subsection 2.3 to derive the PDEs for approximate
solutions of the linear complementarity problem (6)-(7). Before implementing
this procedure, we use the method of dimension reduction used in the studies of
Dai [9] and Dai and Kwok [10] in equations (6) and (7). We denote x, x∗(t, y),
and Q(t, x, y) as

x =
s

m
, x∗(t, y) =

s∗(t,m, y)

m
, and Q(t, x, y) =

P (t, s,m, y)

m
,

respectively.
Then, we obtain the transformed linear complementarity problems with a

final condition and three boundary conditions as follows:

(8)


∂Q
∂t + L̃ϵQ ≤ 0, if Q(t, x, y) = 1− x,
∂Q
∂t + L̃ϵQ = 0, if Q(t, x, y) > 1− x,
∂Q
∂x (t, 1, y) = Q(t, 1, y), Q(T, x, y) = 1− x, Q(t, x∗, y) = 1− x∗,
∂Q
∂x

∣∣
x=x∗ = −1, ∂Q

∂y

∣∣
x=x∗ = 0

on D∗ = E∗ ∪ C∗, where the transferred domains E∗ = {(t, x, y) | 0 < x ≤
x∗(t, y)} and C∗ = {(t, x, y) |x∗(t, y) < x < 1}, and the differential operator L̃ϵ

are described by

L̃ϵ =
1

2
f(y)2x2

∂2

∂x2
+ (r − q)x

∂

∂x
− rI + ρ

ν
√
2√
ϵ
xf(y)

∂2

∂x∂y
+
ν2

ϵ

∂2

∂x2

+

(
1

ϵ
(θ − y)− ν

√
2√
ϵ
Λ(y)

)
∂

∂y
.

Now, to deal with the PDE problems (8) more easily, if we follow Tao [32] on
the option price Q(t, x, y) and consider the time-reversed processes defined by

Q̃(τ, x, y) := Q(T − t, x, y) = Q(t, x, y) and x̃∗(τ, y) := x∗(T − t, y) = x∗(t, y),
then the linear complementarity problems of Q(t, x, y) mentioned in (8) can be
converted into the following free boundary value problems.

(9)


Q̃(τ, x, y) = 1− x, ∀ (x, y) ∈ (0, x̃∗]× (−∞,+∞),

−∂Q̃
∂τ + L̃ϵQ̃ = 0, ∀ (x, y) ∈ (x̃∗, 1)× (−∞,+∞),

∂Q̃
∂x (τ, 1, y) = Q̃(τ, 1, y), Q̃(0, x, y) = 1− x, Q̃(τ, x̃∗, y) = 1− x̃∗,
∂Q̃
∂x (τ, x̃

∗, y) = −1, ∂Q̃
∂y (τ, x̃

∗, y) = 0.

To solve the PDE problem (9), we first decompose the differential operator L̃ϵ

into

L̃ϵ =
1

ϵ
L0 +

1√
ϵ
L1 + L2,
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where

(10)

L0 := ν2
∂

∂y2
+ (θ − y)

∂

∂y
,

L1 :=
√
2ρνxf(y)

∂2

∂x∂y
−

√
2νΛ(y)

∂

∂y
,

L2 :=
1

2
f(y)2x2

∂2

∂x2
+ (r − q)x

∂

∂x
− rI,

and in (10), we note that L0 is the infinitesimal generator of the mean-reverting
OU process scaled by 1

α , L1 contains the mixed partial derivative owing to
the correlation between the two Brownian motions and the first-order partial
derivative from the market price of risk γ, and L2 is the Black-Scholes operator
with the volatility level f(y) excluding the time term.

If we expand Q̃(τ, x, y) and x̃∗(τ, y) in the PDE (9) by using the asymptotic

series in terms of the small parameter
√
ϵ, then Q̃(τ, x, y) and x̃∗(τ, y) are given

by

(11)

Q̃(τ, x, y) =
∑
n≥0

ϵn/2Q̃n(τ, x, y),

x̃∗(τ, y) =
∑
n≥0

ϵn/2x̃∗n(τ, y).

Applying the LCT to (11) leads to

(12)

Q̂(λ, x, y) =
∑
n≥0

ϵn/2Q̂n(λ, x, y),

x̂(λ, y) =
∑
n≥0

ϵn/2x̂n(λ, y),

where Q̂(λ, x, y) = LC(Q̃(τ, x, y))(λ), Q̂n(λ, x, y) = LC(Q̃n(τ, x, y))(λ), x̂(λ, y)
= LC(x̃∗(τ, y))(λ) and x̂n(λ, y) = LC(x̃∗n(τ, y))(λ), and the PDEs (9) are trans-
formed into

(13)


Q̂(λ, x, y) = 1− x, ∀ (x, y) ∈ (0, x̂]× (−∞,+∞),(

1
ϵ
L0 +

1√
ϵ
L1 + L̃2

)
Q̂+ λ(1− x) = 0, ∀ (x, y) ∈ (x̂, 1)× (−∞,+∞),

∂Q̂
∂x

(λ, 1, y) = Q̂(λ, 1, y), Q̂(λ, x̂, y) = 1− x̂,
∂Q̂
∂x

(λ, x̂, y) = −1, ∂Q̂
∂y

(λ, x̂, y) = 0,

where L̃2 := 1
2f(y)

2x2 ∂2

∂x2 + (r − q)x ∂
∂x − (r + λ)I.

By applying the expansion of (12) to the boundary conditions ∂Q̂
∂x (λ, 1, y) =

Q̂(λ, 1, y), Q̂(λ, x̂, y) = 1− x̂ and ∂Q̂
∂x (λ, x̂, y) = −1 in (13), and using the Taylor
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expansion around x = x̂0, we obtain the following relations with respect to
√
ϵ:

(14)

(
∂Q̂0

∂x
(λ, 1, y)− Q̂0(λ, 1, y)

)
+

√
ϵ

(
∂Q̂1

∂x
(λ, 1, y)− Q̂1(λ, 1, y)

)
+ · · · = 0,

Q̂0(λ, x̂0, y) +
√
ϵ

(
x̂1
∂Q̂0

∂x
(λ, x̂0, y) + Q̂1(λ, x̂0, y)

)
+ · · · = 1− x̂0 −

√
ϵx̂1 + · · · ,

∂Q̂0

∂x
(λ, x̂0, y) +

√
ϵ

(
x̂1
∂2Q̂0

∂x2
(λ, x̂0, y) +

∂Q̂1

∂x
(λ, x̂0, y)

)
+ · · · = −1,

where x̂0 = x̂0(λ, y) and x̂1 = x̂1(λ, y) are functions of λ and y, respectively.

In addition, from the expansion of Q̂ mentioned in (12), the PDE in (13)
becomes

(15)

1

ϵ
L0Q̂0 +

1√
ϵ

(
L0Q̂1 + L1Q̂0

)
+
(
L0Q̂2 + L1Q̂1 + L̃2Q̂0 + λ(1− x)

)
+
√
ϵ
(
L0Q̂3 + L1Q̂2 + L̃2Q̂1

)
+ · · · = 0,

and we have the following procedures from (15) to obtain the explicit-closed

solutions for Q̂0 and Q̂1:
• The 1

ϵ
-order term: Comparing the terms of order 1

ϵ on both sides in (15),

we have L0Q̂0(λ, x, y) = 0, as shown in Theorem 4.1, as described in Choi et

al. [5], if we assume that Q̂0 does not grow as much as ∂Q̂0

∂y ∼ ey
2

as y → ∞,

then it implies Q̂0 = Q̂0(λ, x). Thus, Q̂0 satisfies: L0Q̂0 = 0 for x > x̂0, with

the boundary condition Q̂0(λ, x̂0) = 1− x̂0 and ∂xQ̂0(λ, x̂0) = −1. In addition,

because Q̂0 does not rely on y on each side of x̂0, x̂0 are independent of y. That
is, the PDE problem for Q̂0 yields

L0Q̂0(λ, x) = 0 ∀x ∈ (x̂0, 1),

Q̂0(λ, x) = 1− x ∀x ∈ (0, x̂0],

Q̂0(λ, x̂0) = 1− x̂0,
∂Q̂0

∂x

∣∣
x=x̂0

= −1, ∂Q̂0

∂x (λ, 1) = Q̂0(λ, 1).

• The 1√
ϵ
-order term: Comparing the terms of order 1√

ϵ
on both sides in

(15), we obtain L0Q̂1 + L1Q̂0 = 0, and then it leads to L1Q̂0 = 0 as all of
two terms of L1 have the derivatives with respect to y. Therefore, we have

L0Q̂1 = 0, and assuming that Q̂1 does not grow as much as ∂Q̂1

∂y ∼ ey
2

as

y → ∞, Q̂1 = Q̂1(λ, x) holds. Similarly, x̂1 is independent of y. By using the

relations stated in (14), the Q̂1 satisfies
L1Q̂0 + L0Q̂1 = 0 ∀x ∈ (x̂0, 1),

Q̂1(λ, x) = 0, ∀x ∈ (0, x̂0],

x̂1(λ, y)
∂Q̂0

∂x (λ, x̂0) +
∂Q̂1

∂x (λ, x̂0) = 0,
∂Q̂1

∂x (λ, 1) = Q̂1(λ, 1).
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• The zero-order term: In (15), the zero-order term comes up with L0Q̂2 +

L1Q̂1 + L̃2Q̂0 + λ(1− x) = 0, because Q̂1 is independent of y, it is reduced to

(16) L0Q̂2 + L̃2Q̂0 + λ(1− x) = 0.

Here, as we can regard L̃2Q̂0+λ(1−x) as a function of the variable y, equation
(16) is of the form

L0Q̂2 + g(y) = 0,

which is well known as a Poisson equation with respect to the operator L0 in
the variable y, where g(y) = L̃2Q̂0 + λ(1− x). Applying Fredholm alternative
theorem [30] to equation (16) guarantees that there is no solution to equation
(16) if g(y) is not centered on the invariant distribution of the Markov process
Y whose infinitesimal generator is L0. The centering condition is given by

⟨g⟩ =
∫
R
g(y) Φ(y) dy = 0,

where Φ(y) = 1√
2πν

exp(−(y−θ)2

2ν2 ) is the invariant distribution of Y with respect

to the L2-inner product. So, the equation (16) satisfies the centering condition,
it leads to

(17)
⟨L̃2Q̂0 + λ(1− x)⟩ = ⟨L̃2⟩Q̂0(λ, x) + λ(1− x)

= L̃2(σ̄)Q̂0(λ, x) + λ(1− x) = 0,

where L̃2(σ̄) =
1
2 σ̄

2x2 ∂2

∂x2 +(r− q)x ∂
∂x − (r+λ)I is the Black-Scholes operator

with the effective volatility σ̄ denoted by σ̄2 = ⟨f2⟩, as mentioned by Fouque
et al. [17]. From (17), we have

L̃2Q̂0 + λ(1− x) = L̃2Q̂0 + λ(1− x)− ⟨L̃2Q̂0 + λ(1− x)⟩

=
1

2
x2(f2 − ⟨f2⟩)∂

2Q̂0

∂x2
.

• The
√
ϵ-order term: The order term of

√
ϵ in (15) must also be equal to

zero, yielding

(18) L0Q̂3 + L1Q̂2 + L̃2Q̂1 = 0.

Regarding equation (18) as a Poisson equation for Q̂3 with respect to L0 and
taking the average with respect to the invariant distribution of Y , we obtain〈

L1Q̂2 + L̃2Q̂1

〉
= 0.(19)

Then, from the operators presented in (10) and (16), we obtain

Q̂2 = −L−1
0

(
L̃2Q̂0 + λ(1− x)

)
= −1

2
x2L−1

0 (f2 − ⟨f2⟩)∂
2Q̂0

∂x2
= −1

2
(ϕ(y) + c(λ, x))x2

∂2Q̂0

∂x2
,
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where ϕ(y) is the solution of the Poisson equation L0ϕ = f(y)2 − ⟨f(y)2⟩ and
c(λ, x) is a function with regard to λ and x, and from (19), we deduce the
non-homogeneous PDE

(20)

L̃2(σ̄)Q̂1 =

〈
1

2
(ϕ(y) + c(λ, x))x2

∂2Q̂0

∂x2

〉

=
1

2
⟨ L1ϕ(y) ⟩x2

∂2Q̂0

∂x2

=

√
2

2
ρν⟨f(y)ϕ′(y)⟩x3 ∂

3Q̂0

∂x3

+

(
√
2ρν⟨f(y)ϕ′(y)⟩ −

√
2

2
ν⟨Λ(y)ϕ′(y)⟩

)
x2
∂2Q̂0

∂x2
.

Therefore, from (17) and (20), Q̂0 and Q̂1 satisfy the following PDEs:

(21)


L̃2(σ̄)Q̂0(λ, x) + λ(1− x) = 0, ∀x ∈ (x̂0, 1),

Q̂0(λ, x) = 1− x, ∀x ∈ (0, x̂0],
∂Q̂0

∂x (λ, 1) = Q̂0(λ, 1), Q̂0(λ, x̂0) = 1− x̂0,
∂Q̂0

∂x (λ, x̂0) = −1

and

(22)


L̃(σ̄)Q̂1(λ, x) = V2x

2 ∂2Q̂0

∂x2 + V3x
3 ∂3Q̂0

∂x3 , ∀x ∈ (x̂0, 1),

Q̂1(λ, x) = 0, ∀x ∈ (0, x̂0],
∂Q̂1

∂x (λ, 1) = Q̂1(λ, 1), x̂1 = − ∂xQ̂1

∂2
xxQ̂0

(x̂0),

respectively, where

(23)
V2 :=

√
2ρν⟨f(y)ϕ′(y)⟩ −

√
2

2
ν⟨Λ(y)ϕ′(y)⟩,

V3 :=

√
2

2
ρν⟨f(y)ϕ′(y)⟩.

4. Option price formulas

In this section, using the results discussed in the previous section and the
inverse LCT, we derive the corrected option price which consists of the leading
order term and the correction order term. In fact, the corrected option price is
one of the main contributions in our study. Mathematically, it is expressed by

(Corrected option price) = (leading order price) + (correction term),

where (leading order price) = P0 and (correction term) =
√
ϵP1.

Theorem 4.1 (Value of the leading order term for the American lookback
options in frequency domain). If we solve the ODEs given by (21), then the
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value of the leading order term Q̂0(λ, x) for the American lookback option is
explicitly described by

Q̂0(λ, x) =

{
A1x

a1 +A2x
a2 − λ

λ+qx+ λ
λ+r , ∀x ∈ (x̂0, 1),

1− x, ∀x ∈ (0, x̂0],

where the coefficients A1 and A2 are given by

A1 = −
λ

λ+ra2x̂0
a2 + q

λ+q x̂0(a2 − 1)

a1(a2 − 1)x̂0
a1 − a2(a1 − 1)x̂0

a2
and

A2 =

λ
λ+ra1x̂0

a1 + q
λ+q x̂0(a1 − 1)

a1(a2 − 1)x̂0
a1 − a2(a1 − 1)x̂0

a2
,

respectively. In addition, the free boundary value x̂0 = x̂0(λ) is determined by
the following algebraic equation:

λ

λ+ r
(a1 − a2)x̂0

a1+
q

λ+ q

(
−(a1 − 1)(a2 − 1)x̂0 + (a1 − 1)(a2 − 1)x̂0

a1−a2+1
)

− r

λ+ r

(
a1(a2 − 1)x̂0

a1−a2 − (a1 − 1)a2
)
= 0.

Proof. In (21),

(24) L̃(σ̄)Q̂0(λ, x) + λ(1− x) = 0, ∀x ∈ (x̂0, 1)

is a non-homogeneous Cauchy-Euler equation, and the characteristic equation
for (24) is given by

(25)
1

2
σ̄2a2 +

(
r − q − 1

2
σ̄2

)
a− (r + λ) = 0.

Let us define a1 = a1(λ) > 1 and a2 = a2(λ) < 0 as two real roots of the

quadratic equation (25). If we set Q̂0(λ, x) by Q̂0(λ, x) = A1x
a1 + A2x

a2 +
A3x+A4, we can explicitly obtain the following closed solution.

(26) Q̂0(λ, x) = A1x
a1 +A2x

a2 − λ

λ+ q
x+

λ

λ+ r
.

To determine the constants A1 and A2, we apply two conditions ∂Q̂0

∂x (λ, 1) =

Q̂0(λ, 1) and
∂Q̂0

∂x (λ, x̂0) = −1 to (26), we obtain

(27)

{
(a1 − 1)A1 + (a2 − 1)A2 = λ

λ+r ,

a1A1x̂0
a1 + a2A2x̂0

a2 = − q
λ+q x̂0.

Then

A1 = −
λ

λ+ra2x̂0
a2 + q

λ+q x̂0(a2 − 1)

a1(a2 − 1)x̂0
a1 − a2(a1 − 1)x̂0

a2
and

A2 =

λ
λ+ra1x̂0

a1 + q
λ+q x̂0(a1 − 1)

a1(a2 − 1)x̂0
a1 − a2(a1 − 1)x̂0

a2
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are satisfied. Similarly, applying the condition Q̂0(λ, x̂0) = 1− x̂0 to (27) leads
to

A1x̂0
a1 +A2x̂0

a2 =
r

λ+ r
− q

λ+ q
x̂0,

and it comes up with the following algebraic equation

λ

λ+ r
(a1 − a2)x̂0

a1+
q

λ+ q

(
−(a1 − 1)(a2 − 1)x̂0 + (a1 − 1)(a2 − 1)x̂0

a1−a2+1
)

− r

λ+ r

(
a1(a2 − 1)x̂0

a1−a2 − (a1 − 1)a2
)
= 0.

Therefore, we derive the desired results for solutions Q̂0 and x̂0. □

Theorem 4.2 (Value of the first-order correction term for the American look-
back options in frequency domain). From (22), the solution of the first-order

correction term Q̂1(λ, x) for American lookback options is described by

Q̂1(λ, x) = (B1 + C1 log x)x
a1 + (B2 + C2 log x)x

a2 ,

and the correction term for the optimal exercise boundary is given by

x̂1 =
(a1B1 + C1)x̂0

a1−1 + (a2B2 + C2)x̂0
a2−1 + a1C1x̂0

a1−1 log x̂0 + a2C2x̂0
a2−1 log x̂0

a1(a1 − 1)A1x̂0
a1−2 + a2(a2 − 1)A2x̂0

a2−2 ,

where

B1 = −−(C1 + C2)x̂0
a2 + (a2 − 1) (C1x̂0

a1 log x̂0 + C2x̂0
a2 log x̂0)

(a1 − 1)x̂0
a2 − (a2 − 1)x̂0

a1
,

B2 = −−(C1 + C2)x̂0
a1 + (a1 − 1) (C1x̂0

a1 log x̂0 + C2x̂0
a2 log x̂0)

(a1 − 1)x̂0
a1 − (a2 − 1)x̂0

a2
,

C1 =
(V2 + V3(a1 − 2))A1a1(a1 − 1)

1
2 σ̄

2(2a1 − 1) + (r − q)
, C2 =

(V2 + V3(a2 − 2))A2a2(a2 − 1)
1
2 σ̄

2(2a2 − 1) + (r − q)
.

Proof. From (22),

L̃(σ̄)Q̂1(λ, x) = V2x
2 ∂

2Q̂0

∂x2
+ V3x

3 ∂
3Q̂0

∂x3
, x ∈ (x̂0, 1),(28)

and suppose that Q̂1(λ, x) is in the form of Q̂1(λ, x) = (B1 + C1 log x)x
a1 +

(B2 + C2 log x)x
a2 . Applying the solution Q̂0(λ, x) presented in Theorem 4.1,

and Q̂1(λ, x) to (28), we can rewrite equation (28) as

(29)
(LHS)=

(
1
2 σ̄

2(2a1 − 1)+(r − q)
)
C1x

a1+
(
1
2 σ̄

2(2a2 − 1)+(r − q)
)
C2x

a2 ,

(RHS)=(V3(a1−2)+V2)A1a1(a1−1)xa1+(V3(a2−2)+V2)A2a2(a2−1)xa2 .

By comparing the coefficients for xa1 and xa2 on both sides in (29), we obtain

C1 =
(V2 + V3(a1 − 2))A1a1(a1 − 1)

1
2 σ̄

2(2a1 − 1) + (r − q)
and

C2 =
(V2 + V3(a2 − 2))A2a2(a2 − 1)

1
2 σ̄

2(2a2 − 1) + (r − q)
.
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From the two conditions ∂Q̂1

∂x (λ, 1) = Q̂1(λ, 1) and Q̂1(λ, x̂0) = 0, we have that

(a1 − 1)B1 + (a2 − 1)B2 + C1 + C2 = 0,

x̂0
a1B1 + x̂0

a2B2 + x̂0
a1 log(x̂0)C1 + x̂0

a2 log(x̂0)C2 = 0

and, if we solve the above simultaneous equations, then

B1 = −−(C1 + C2)x̂0
a2 + (a2 − 1) (C1x̂0

a1 log x̂0 + C2x̂0
a2 log x̂0)

(a1 − 1)x̂0
a2 − (a2 − 1)x̂0

a1
,

B2 = −−(C1 + C2)x̂0
a1 + (a1 − 1) (C1x̂0

a1 log x̂0 + C2x̂0
a2 log x̂0)

(a1 − 1)x̂0
a1 − (a2 − 1)x̂0

a2
.

Finally, by using the condition x̂1 = − ∂xQ̂1

∂2
xxQ̂0

(x̂0), x̂1 can be explicitly calcu-

lated.

x̂1 =
(a1B1 + C1)x̂0

a1−1 + (a2B2 + C2)x̂0
a2−1 + a1C1x̂0

a1−1 log x̂0 + a2C2x̂0
a2−1 log x̂0

a1(a1 − 1)A1x̂0
a1−2 + a2(a2 − 1)A2x̂0

a2−2 .

Therefore, we obtain the solutions of Q̂1 and x̂1. □

As shown in Fouque et al. [17] or the procedures for the approximation men-
tioned in Section 3, using the expansions (11), the approximated (or analytic)

solutions for Q̃ in the PDEs (9) are given by

Q̃(τ, x, y) ≈ Q̃(τ, x) = Q̃0 +
√
ϵQ̃1,(30)

x̃∗(τ, y) ≈ x̃∗(τ) = x̃0
∗ +

√
ϵx̃1

∗.(31)

However, because it is very difficult to solve Q̃0, Q̃1, x̃0
∗, and x̃1

∗ directly in
(30) and (31), we applied the LCT to the PDEs (9) to obtain the transformed
PDEs stated in (13). Then, using the singular perturbation method, we obtain

the explicit closed formulas for Q̂0, Q̂1, x̂0, and x̂1.
In the following process, we attempt to use the inverse LCT on the results

obtained from Theorem 4.1 and Theorem 4.2 to derive the analytic formulas
for the American lookback options using the SV model mentioned in (9). For
the inversion of the LCT, we utilize the Gaver-Stehfest method proposed by
Gaver [18] and Stehfest [31]. Therefore, we calculate the solution of Q̃(τ, x, y)

mentioned in (9) numerically, which can be Q̃(τ, x) = Q̃0 +
√
ϵQ̃1, by using

the Laplace-Carson algorithm given by Gaver [18]. In other words, considering
the speed and stability of the calculation, to obtain the desired approximated
formulas Q̃0 +

√
ϵQ̃1, we use the n-th extrapolation Gaver-Stehfest methods.

In particular, the Gaver-Stehfest method with 5-th extrapolation for pricing
accuracy was used in this study. The brief illustrations for the inversion of the
Gaver-Stehfest method are given in Appendix B.

Based on the numerical results for (30) and (31) implemented using the
Gaver-Stehfest method, we have the first-order approximations of the American
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lookback options P (t, s,m, y) and s∗(t, y,m) described by (4) and (5), which
are defined as P̄ (t, s,m) and s̄∗(t,m), respectively, given by

(32)
P (t, s,m, y) ≈ P0(t, s,m) +

√
ϵP1(t, s,m) := P̄ (t, s,m),

s∗(t, y,m) ≈ s0(t,m) +
√
ϵs1(t,m) = s̄∗(t,m),

where P0(t, s,m)=mQ0(t, x)=mQ̃0(τ, x), P1(t, s,m)=mQ1(t, x)=mQ̃1(τ, x),
s0(t,m) = mx0(t) = mx̃∗0(τ) and s1(t,m) = mx1(t) = mx̃∗1(τ) as Q(t, x, y) =
P (t,s,m,y)

m , where x = s
m . A detailed proof of the error accuracy of the first

approximation expressed by (32) is presented by Fouque et al. [16,17]. In other
words, from the asymptotic expansion method on the PDEs (9), if the payoff
function h is smooth, then the accuracy of the first-order approximation is
described by∣∣∣∣P (t, s,m, y)−

[
P0 (t, s,m) +

√
ϵP1 (t, s,m)

] ∣∣∣∣ ≤ O(ϵ).

However, if the payoff function h does not have a smooth function, that is,
h is not continuously differentiable, we need to proceed with the procedure
for a payoff-regularization statement considering the pointwise accuracy of the
corrected option price as the payoff function has an angle at the strike price.
By utilizing the payoff regularization given by Fouque et al. [16], we can extend
the accuracy of the first approximation in (32) by assuming that the maturity
is T −δ in place of T . Then, the error accuracy of the first-order approximation
in (32) is given by∣∣∣∣P (t, s,m, y)−

[
P0 (t, s,m) +

√
ϵP1 (t, s,m)

] ∣∣∣∣ ≤ O(ϵ ln ϵ).

5. Numerical experiments

In this section, we investigate the impact of the price changes of the Ameri-
can lookback options and their optimal exercise boundaries under SV in terms
of the model parameters. The numerical implications are carried out through
the scaled approximated prices given by (30) and (31), obtained by the inversion
of the Gaver-Stehfest method. The model parameters used in the numerical
experiments are listed in Table 1.

Table 1. The parameters used for numerical analysis.

µ θ ν ρ ϵ V2 V3
1.0 −2.5 1.0 −0.3 0.04 0.1203 0.0018

In the equations for universal group parameters V2 and V3 presented in
(23), if we set f(y) and Λ(y) as f(y) = ey and Λ(y) = e−y, respectively,

then the effective volatility σ̄ =
(∫∞

−∞ f2(y) Φ(y) dy
)1/2

is given by eθ+ν2

. In
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addition, ϕ(y) included in V2 and V2 is a solution of the second-order ODE
L0ϕ = f(y)2 − σ̄2, and V2 and V3 described by Fouque et al. [17] using these
specific functions gives

V2 =
1√
2ν

[
2ρe3θ

(
e5ν

2/2−e9ν
2/2
)
+
(
ρ(µ−r)+

√
1−ρ2

)
eθ
(
e5ν

2/2 − eν
2/2
)]
,

V3 = − ρ√
2ν
e3θ
(
e9ν

2/2 − e5ν
2/2
)
.
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Figure 1. Optimal exercise values of the leading-order term
s0(= mx̃∗0) and correction term s1(= mx̃∗1) based on dividend
yield and interest rate.

Figure 1 plots the changes of the free-boundary values of the leading order s0
and the correction order s1 with respect to time-to-maturity for given dividend
yields or interest rates. As shown in Figure 1(a) and Figure 1(c), as time to
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maturity increases, the value of s0 tends to decrease. Furthermore, in Figure
1(b) and Figure 1(d), we can observe that as time-to-maturity gets closer to 0,
the price differences in s1 for interest rates or dividend yields are insignificant
or zero. It implies that the effects of the SV on the free boundary values are
almost insignificant as time-to-maturity expires, while the influences of the SV
on the free boundary prices become significant as the maturity is far in the
future compared to the valuation time. Moreover, the price behaviors of the
correction order term s1 have a tendency to be larger than those of the leading
order term s0 in terms of time-to-maturity. It means that the impacts of the
SV on the price of the optimal boundaries are very sensitive against time-to-
maturity for given dividend rates or interest rates.

Figure 2 shows the price behaviors of the leading order term P0 and the cor-
rection term P1 with regard to the ratio of the underlying asset to the maximum
process defined byMt = max0≤τ≤t Sτ . As shown in Figure 2, the leading-order
price P0 tends to decrease in terms of s

m . However, the correction price P1 does
not have any monotonicity, and in particular, has a hump phenomenon near
s
m = 0.96. Furthermore, it can be observed that the sensitivity of the value of
the correction term P1 is much larger than that of the leading term P0. This
implies that the price sensitivity of the SV on the American lookback options
is significant in terms of the underlying asset or the maximum value process.
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Figure 2. Graphs of the leading order price and correc-
tion price with respect to the ratio of the underlying as-
set to the maximum process defined by Mt = max0≤τ≤t Sτ

(r = 0.040, q = 0.045 and τ = 0.02).
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Figure 3. Value of the free-boundaries s0(= mx̃∗0), s1(=
mx̃∗1) and s0 +

√
ϵs1 with regard to effective volatility (r =

0.040, q = 0.045).

Figure 3 depicts the price effect of the optimal boundary s0, the correction
term s1, and the corrected term s0+

√
ϵs1 with respect to the time-to-maturity

for each effective volatility. Here, the standard of the choice is based on the
direct computation from the model parameters given in Table 1, where the
effective volatility is given by

σ̄ =

(∫ ∞

−∞
f2(y) Φ(y) dy

) 1
2

= eθ+ν2

≈ 0.22.
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Therefore, to observe the price behaviors of the free boundaries for the effective
volatilities, we take three effective volatilities at intervals of 0.8 from σ̄ = 0.22.
Similar to Figure 1, the price influences of the optimal exercise boundaries s1
are larger than those of s0 in terms of time to maturity. This means that the
effect of SV on the free-boundary value is more sensitive to that of the Black-
Scholes (BS). In addition, in the case of the leading order price s0 in Figure
3(a), it can be observed that the larger the effective volatility, the greater the
impact on the free-boundary price. In contrast, in the case of the correction
order price s1 and the corrected price s0 +

√
ϵs1 stated in Figure 3(b) and

Figure 3(c), respectively, it shows that if the effective volatility increases, the
price change becomes more insignificant. It also implies that the free-boundary
value s0 is dominated by the free-boundary value s1, and eventually, the SV
factor against the effective volatility exerts a significant effect on the value of
the optimal boundary.

Figure 4 plots the changes of the option prices for P0, P1 and P0 +
√
ϵP1

with regard to time-to-maturity for each effective volatility σ̄. As seen in the
Figure 4(a) and Figure 4(b), as the lines get closer to the maturity, the price
gaps become zero for given effective volatilities. In addition, the price of the
leading-order term P0 is less sensitive to time-to-maturity compared with the
correction term P1, and we can observe that the price changes of the correction
term are much more significant compared with that of the leading-order term
for the effective volatility as well as time-to-maturity, having a hump shape
near the expiration. It implies that the option price is significantly affected by
the SV factor with respect to time-to-maturity as well as the effective volatility.

Figure 5 displays the price influences for P0, P1, and P0 +
√
ϵP1 in terms

of the maximum process M for the given effective volatilities. Surprisingly,
as shown in Figure 5(a), there is little or no change in the leading-order price
P0 for each effective volatility, while the correction price P1 has a substantial
change in the given effective volatility, giving rise to the hump phenomena
similar to those in Figure 4. Thus, it can be observed that the nature of SV
has a great effect on the American lookback options for effective volatility and
the maximum process.

From now on, we make use of the analytical solution of the American look-
back options expressed by (32) to examine the sensitivity of the option price
in terms of the model parameters. The existence of this approximated solu-
tion allows us to contribute significantly to the efficiency and accuracy of the
pricing of American lookback options To demonstrate the accuracy of the ap-
proximated corrected solution described by (32), we compare our approximated
formula with the numerical price obtained from a Monte Carlo simulation.

Tables 2 and 3 show the price differences between the solution of the Monte
Carlo simulation and the approximated solution of the American lookback op-
tions according to the small parameter ϵ and the number of simulations, respec-
tively. Referring to the calibrated parameters described by Fouque et al. [17]
and [15], we carry out the Monte-Carlo simulation. All the computations for
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Figure 4. Option values of P0, P1 and P0+
√
ϵP1 with respect

to effective volatility (r = 0.040, q = 0.045,m = 1.1, ϵ = 0.007
and s/m = 0.9).

the Monte Carlo simulation and the analytically approximated solution are
implemented by utilizing an Intel i7-6700 CPU (3.40 GHz, 16 GB RAM). As
seen in Tables 2 and 3, as ϵ increases or the number of simulations increases,
the numerical solution from the Monte Carlo simulation, which is regarded as
a good approximation in a real-world solution, gets closer to our analytic so-
lution. This finding means that the approximated formula presented in (32)
provides an accurate solution for the American lookback options.
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Figure 5. Option values of P0, P1 and P0+
√
ϵP1 with respect

to effective volatility (r = 0.040, q = 0.045, ϵ = 0.007 and
τ = 0.02).

6. Concluding remarks

In this study, we investigate the approximated solutions of the American
lookback options and their optimal exercise boundaries under a SV model in-
troduced by Fouque et al. [17], which accounts for the nature of SVs in the
financial market. First, we find the PDEs for the value of the American look-
back options using the underlying asset models, and by exploiting a singular
perturbation method and the LCTs, we obtain analytic formulas for the cor-
rected option value. For inverting the LCTs, we use the Gaver-Stehfest methods
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Table 2. The change in the price difference between the
Monte-Carlo price PMC and the corrected solution P̄ with re-
spect to the ϵ. Note that (i) the # of simulations for the
Monte Carlo simulation is 10,000, (ii) CI means confidence in-

terval, and (iii) RE = |PMC−P̄ |
PMC

× 100. Selected parameters are
m = 1.55, ν = 0.5, q = 0, r = 0.02, ρ = 0.1, S0 = 1, Y0 = 0, σ̄ =
0.22, T = 1, θ = 0,Λ(y) = 0, f(y) = ey, V2 = 0.0188, andV3
= 0.0094.

ϵ PMC CI (95%) P̄ |PMC − P̄ | RE (%)

10−3 0.505517 [0.192431,0.818604] 0.561292 0.055774 11.033122

10−4 0.537304 [0.507823,0.566785] 0.550957 0.013653 2.540986

10−5 0.555665 [0.540580,0.570750] 0.547689 0.007976 1.435441

10−6 0.542206 [0.528808,0.555604] 0.546655 0.004449 0.820595

Table 3. The change in the price difference between the
Monte-Carlo price PMC and the corrected solution P̄ with
respect to # of simulations for Monte-Carlo method (ϵ =
10−6). Note that (i) CI means confidence interval, (ii) RE1 =
|PMC−P0|

PMC
× 100, and (iii) RE2 = |PMC−P̄ |

PMC
× 100. The param-

eters are given by m = 1.55, ν = 0.5, q = 0, r = 0.02, ρ =
0.1, S0 = 1, Y0 = 0, σ̄ = 0.22, T = 1, θ = 0,Λ(y) = 0, f(y) =
ey, V2 = 0.0188, andV3 = 0.0094.

# of paths PMC CI (95%) P0 P̄ (ϵ = 10−6) |PMC − P0| RE1 (%) |PMC − P̄ | RE2 (%)

10,000 0.542 206 [0.528 808,0.555 604] 0.550 405 0.546 655 0.008 199 1.512 189 0.004 449 0.820 595

20,000 0.548 140 [0.541 056,0.555 225] 0.550 405 0.546 655 0.002 265 0.413 182 0.001 485 0.270 925

30,000 0.547 043 [0.538 210,0.555 875] 0.550 405 0.546 655 0.003 362 0.614 634 0.000 388 0.070 846

50,000 0.546 888 [0.541 774,0.552 002] 0.550 405 0.546 655 0.003 517 0.643 085 0.000 233 0.042 588

100,000 0.546 590 [0.543 066,0.550 113] 0.550 405 0.546 655 0.003 816 0.698 057 0.000 066 0.012 010

stated in Appendix B in detail. Second, based on the analytical solutions, we
verify that our first-approximated solution comes up with an accurate formula
of the American lookback options compared with the Monte Carlo price. Third,
from the numerical experiments, we investigate the quantitative and qualita-
tive influence of our approximated solutions by analyzing the fast mean-revering
process contained in the SV model. We can notice that the impact of the SV on
the movements of the option prices and the free-boundary values in the Amer-
ican lookback options is very sensitive to time-to-maturity, effective volatility
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or the maximum process. Finally, many researchers are currently working on
the American options or exotic options using the LCTs for higher-dimensional
model dynamics in financial mathematics. For further research, our chosen
American lookback option could be extended to a more complicated American
option with other types.

Appendix A. Basic properties of the Laplace-Crson transforms

Referring to [25], we can derive some useful properties from the definition
of the LCTs.

LC
[
d

dx
χ(x)

]
(λ) = λ(χ∗(λ)− χ(0+)),

LC
[
χ(n)(x)

]
(λ) = λnχ∗(λ)−

n−1∑
k=0

λn−kχ(k)(0+) for n = 1, 2, . . . ,

LC
[∫ x

0

χ(y)dy

]
(λ) =

1

λ
χ∗(λ),

LC
[
χ(x)

x

]
(λ) = λ

∫ ∞

λ

χ∗(s)

s
ds,

LC[χ(x− a)1{x≥a}(x)](λ) = e−aλχ∗(λ), a > 0,

LC[eaxχ(x)](λ) = λ

λ− a
χ∗(λ− a),

LC
[
χ
(x
a

)]
(λ) = χ∗(aλ), a > 0.

Appendix B. The review of the Gaver-Stehfest methods

In this appendix, we introduce the method of the Laplace-Carson inverse
transforms. This inverse algorithm is applied to the results obtained from
Theorem 4.1 and Theorem 4.2 in Section 4. There are several methods used for
Laplace-Carson inverse transformation, such as the post-width, Lagueree, and
Gaver-Stehfest methods. Because it is convenient for us to deal with the Gaver-
Stehfest method (Gaver [18]; Stehfest [31]) and it is less robust than other
methods (cf. Kimura [24]), we used the method for numerical experiments.
A detailed description of this method is presented in [1], and the sufficient
condition for the integrand function ψ for the LCTs, where the convergence of
ψ is guaranteed as the limit of an extrapolation function ψn, is described in
[27].

Referring to Kimura [24], let us consider the LCT ψ̂ of a locally integrable
function ψ : (0,∞) → R

ψ̂(λ) :=

∫ ∞

0

λe−λτψ(τ) dτ,
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where the integrand function ψ is approximately expressed by ψn(τ), and

ψn(τ) := ψ
(n)
n (τ) (n ≥ 1) is generated by the recursive sequence {ψ(m)

n : n,m =
1, 2, . . .} such that

ψ
(m)
0 (τ) := ψ̂

(
m
log 2

τ

)
,

ψ(m)
n (τ) :=

(
1 +

m

n

)
ψ
(m)
n−1(τ)−

m

n
ψ
(m+1)
n−1 (τ), n = 1, 2, . . . .

However, because the method has a disadvantage in that the speed of con-
vergence is slow, Stehfest [31] suggested an auxiliary extrapolation function

ψ∗
n(τ) =

n∑
k=1

(−1)n−kkn

k!(n− k)!
ψk(τ)(33)

to improve the calculation speed. In other words, {ψ∗
n(τ) : n = 1, 2, . . .}

converges to ψ faster than {ψn(τ) : n = 1, 2, . . .}, as mentioned by Kimura
[24]. Thus, Equation (33) is said to be the n-th extrapolation Gaver-Stehfest
methods. According to Stehfest [31], ψ∗

n converges to ψ sufficiently in the case
of n ≥ 4, and the relative errors of the approximation are less than 10−4. In
this study, we used the Gaver-Stehfest method with the 5-th extrapolation for
pricing accuracy.
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