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∆-TRANSITIVITY FOR SEMIGROUP ACTIONS

Tiaoying Zeng

Abstract. In this paper, we study ∆-transitivity, ∆-weak mixing and ∆-

mixing for semigroup actions and give several characterizations of them,

which generalize related results in the literature.

1. Introduction

By a (topological) dynamical system, we mean a pair (X, g), where X is a
compact metric space and g : X → X is a continuous map.

The study of transitive systems and its classification plays a big role in
topological dynamics. Many authors have done much work in classifying tran-
sitive systems by their recurrence properties. A dynamical system (X, g) is
∆-transitive if for every d ⩾ 2 there exists a residual subset X0 of X such that
for every x ∈ X0 the diagonal d-tuple x(d) =: (x, x, . . . , x) has a dense orbit
under the action g×g2×· · ·×gd. In [9], Moothathu showed that ∆-transitivity
implies weakly mixing, but there exists some strongly mixing systems which
are not ∆-transitive. He also pointed out that multi-transitivity, weakly mix-
ing and ∆-transitivity were equivalent for a minimal homeomorphism. In [7],
Kwietniak and Oprocha extended this result to a non-invertible case. Using a
class of Furstenberg families introduced in [3], Chen, Li and Lü in [4] character-
ized the entering time sets of transitive points into open sets in multi-transitive
and ∆-transitive systems, answering several problems proposed in [7].

Recall that a dynamical system (X, g) is ∆-weakly mixing if the product
system (X×X, g× g) is ∆-transitive. In [5], the authors showed that this kind
of ∆-weakly mixing is in fact equivalent to ∆-transitivity, and then ∆-weakly
mixing shares similar properties of ∆-transitivity.

A dynamical system (X, g) is ∆-mixing if for every m ∈ N and infinite
subset A ⊂ N, there exists a residual subset X0 of X such that for every
x ∈ X0, {(gnx, g2nx, . . . , gmnx) : n ∈ A} is dense in Xm. In [9], Moothathu
gave some relations among multi-transitivity, ∆-transitivity and ∆-mixing.
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In the past years, much attention has been paid to the research of dynamical
systems under general semigroup actions, see [2,6,13–15] and references therein.
In [16], we studied multi-transitivity and ∆-transitivity for semigroup actions,
while giving several characterizations of them. In [16], by a G-system, we mean
a triple (X,G, π), where G is a discrete semigroup, X is a Polish space (i.e., a
complete metrizable space) and

π : G×X → X, (g, x) 7→ gx

is a continuous action on G × X with the property that π(g1, π(g2, x)) =
π(g1g2, x) for all x ∈ X and g1, g2 ∈ G. Usually, we write the G-system as
a pair (X,G). We define ∆-transitivity for the system (X,G) in [16] as follows:
the system (X,G) is ∆-transitive if for every n ∈ N, there exists a residual
subset X0 of X such that for each x ∈ X0, {(gx, g2x, . . . , gnx) : g ∈ G} is dense
in Xn.

In this paper we define a more powerful definition of ∆-transitivity under
semigroup actions and attain stronger consequences.

In [1], Blanchard and Huang defined a local version of weak mixing, so called
weakly mixing set, and proved that positive topological entropy implies the ex-
istence of weakly mixing sets. In [10–12], Oprocha and Zhang also discussed
local versions of weak mixing extensively. In [5], the authors studied the prop-
erty of ∆-weakly mixing and showed that a topological dynamical system with
positive topological entropy has many ∆-weakly mixing subsets. Recently in
[8], Liu extended the results in [5] to countable torsion-free discrete nilpotent
group actions.

Recall that a group is torsion-free if any element has infinite order except
the identity element. Liu defined ∆-transitivity in [8] as follows: Let (X,G) be
a G-system, where G is a countable torsion-free discrete group with the unit
e and |X| ≥ 2. We say that (X,G) is ∆-transitive provided that there is a
residual subset A of X such that for any x ∈ A, d ≥ 1 and pairwise distinct
T1, T2, . . . , Td ∈ G \ {e}, the orbit closure of the d-tuple (x, x, . . . , x) under the
action T1 × T2 × · · · × Td contains Xd, i.e.,

{(Tn
1 x, T

n
2 x, . . . , T

n
d x) : n ∈ N} = Xd.

Through the above ideas and results, we find that the definition of ∆-
transitivity in [8] is a more general characterization of this property. There
is a close connection between this definition of ∆-transitivity and other prop-
erties (such as topological entropy) in dynamical systems. In this paper, we
define ∆-transitivity in a similar way as in [8] for semigroup actions. Our aim
is to give characterizations of ∆-transitivity under semigroup actions of this
notion and find some relations among ∆-transitivity, ∆-weakly mixing and ∆-
mixing. Besides, we study local version of ∆-transitivity, and show that if G is
abelian, a G-system is ∆-transitive if and only if it is ∆-weakly mixing while
it is no longer true for ∆-transitive subsets and ∆-weakly mixing sets.
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This paper is organized as follows. In Section 2, we introduce some notions
and results which will be used later. In Section 3, we study ∆-transitivity
and ∆-mixing for semigroup actions. We give some characterizations of ∆-
transitivity and discuss some properties of ∆-mixing for general semigroup
actions.

2. Preliminaries

In this paper, let N, Z+ and Z denote the set of all positive integers, non-
negative integers and integers, respectively. The cardinality of a set B is de-
noted by |B|.

A subset P ⊂ N is thick if it contains arbitrarily long blocks of consecutive
positive integers, that is, for every n ≥ 1 there is mn ∈ N such that {mn,mn +
1, . . . ,mn + n} ⊂ P . A subset P of N is syndetic if it has a bounded gap, that
is, there is N ∈ N such that {n, n+1, . . . , n+N}∩P ̸= ∅ for every n ∈ N. Let
A be a collection of N with A ≠ ∅ and ∅ /∈ A. If for every A1, A2 ∈ A there
exists A ∈ A such that A ⊂ A1 ∩A2, then we say A is a filter base.

Let G be a countable discrete semigroup with the identity e. By a G-system,
we mean a pair (X,G), where X is a compact metric space and there exists
a continuous map ϕ : G × X → X, (g, x) 7→ gx such that ϕ(e, x) = x and
ϕ(h, ϕ(gx)) = ϕ(hg, x) for all g, h ∈ G and x ∈ X. For a G-system and m ∈ N,
(Xm, G) is also a G-system, where g(x1, x2, . . . , xm) := (gx1, gx2, . . . , gxm) for
any (x1, x2, . . . , xm) ∈ Xm and g ∈ G. A semigroup G is abelian if g1g2 = g2g1
for all g1, g2 ∈ G. For a point x ∈ X, the orbit of x is the set Gx := {gx : g ∈
G}. For a point x ∈ X and a subset U of X, we define the hitting time set of
x into U by

N(x, U) = {g ∈ G : gx ∈ U}.
For two subsets U and V of X, we define the hitting time set of U and V by

N(U, V ) = {g ∈ G : U ∩ g−1V ̸= ∅}.
When G is the semigroup (Z+,+), let g : X → X, x → ϕ(1, x). Then ϕ can be
generated by g. In this case we denote the dynamical system by (X, g).

A dynamical system (X,G) is called transitive if for every non-empty open
subsets U and V of X, there exists g ∈ G such that

U ∩ g−1V ̸= ∅;
weakly mixing if (X×X,G) is transitive; strongly mixing if for every non-empty
open subsets U and V of X, there exists a finite subset F of G such that

U ∩ g−1V ̸= ∅, ∀g ∈ G \ F.
Let G be a semigroup and P denote the collection of all subsets of G. A

subset F of P is called a Furstenberg family over G (or just a family over G),
if it is hereditary upward, i.e., F1 ⊂ F2 ⊂ G and F1 ∈ F imply F2 ∈ F .

Let (X,G) be a dynamical system and F be a Furstenberg family over
G. The system (X,G) is called F-transitive if for every two non-empty open
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subsets U and V of X, the hitting time set N(U, V ) ∈ F . We say that a point
x ∈ X is F-transitive if for every non-empty open subset U ⊂ X, N(x, U) ∈ F .
The collection of F-transitive points is denoted by TransF (X,G).

Convention. Unless otherwise specified, in the statement of our results we
will assume that X has no isolated point and G is infinite.

3. ∆-transitivity

In this section, we define ∆-transitivity for general semigroup actions and
derive some properties of ∆-transitivity.

Definition 3.1. Let A be a subset of N. We say that (X,G) is ∆-A-transitive
if for any d ≥ 1 and pairwise distinct g1, . . . , gd ∈ G \ {e}, there exists a dense
subset Y of X such that for any x ∈ Y

{(gn1 x, gn2 x, . . . , gndx) : n ∈ A}
is dense in Xd. If A = N, we say that (X,G) is ∆-transitive briefly.

Let (X,G) be a G-system. For any d ∈ N, pairwise distinct g1, . . . , gd ∈
G \ {e}, non-empty open subsets U0, U1, . . . , Ud, we set

N(U0;U1, . . . , Ud | g1, . . . , gd) = {n ∈ N : U0 ∩ g−n
1 U1 ∩ · · · ∩ g−n

d Ud ̸= ∅}.
The following proposition give some equivalent conditions of ∆-A-transitivity,
which extends the result in [9] for semigroup actions.

Proposition 3.2. Let (X,G) be a G-system and A ⊂ N. Then the following
conditions are equivalent:

(1) (X,G) is ∆-A-transitive;
(2) for any d ∈ N, pairwise distinct g1, . . . , gd ∈ G\{e} and non-empty open

subsets U0, U1, . . . , Ud,

N(U0;U1, . . . , Ud | g1, . . . , gd) ∩A ̸= ∅.
(3) for any d ∈ N, pairwise distinct g1, . . . , gd ∈ G \ {e}, there exists a

residual subset Y of X such that for any x ∈ Y

{(gn1 x, gn2 x, . . . , gndx) : n ∈ A}
is dense in Xd.

Proof. (1) ⇒ (2) Let d ∈ N and g1, . . . , gd be pairwise distinct elements of
G \ {e}. Let U0, U1, . . . , Ud be non-empty open subsets of X. Choose x ∈ U0

satisfying that
{(gn1 x, gn2 x, . . . , gndx) : n ∈ A}

is dense in Xd. Then there exists some n ∈ A such that (gn1 x, g
n
2 x, . . . , g

n
dx) ∈

U1 × U2 × · · · × Ud, that is

x ∈ U0 ∩
d⋂

i=1

g−n
i (Ui),
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and thus n ∈ N(U0;U1, . . . , Ud | g1, . . . , gd) ∩A.
(2) ⇒ (3) Let d ∈ N and g1, . . . , gd be pairwise distinct elements of G \ {e}.

Let {Bk : k ∈ N} be a countable base of open balls of X. Set

Y =
⋂

(k1,k2,...,kd)∈Nd

⋃
n∈A

d⋂
i=1

g−n
i (Bki

).

The set
⋃

n∈A

⋂d
i=1 g

−n
i (Bki) is clearly open, and it is dense by (2). So by Baire

category theorem, Y is a dense Gδ subset of X. It is easy to see that for a
point x ∈ X the set {(gn1 x, gn2 x, . . . , gndx) : n ∈ A} is dense in Xd if and only if
x ∈ Y .

(3) ⇒ (1) It is obvious. □

When G is abelian, the equivalent condition for ∆-transitivity can be sim-
pler, see the following lemma.

Lemma 3.3. Let (X,G) be a G-system with G abelian. Then (X,G) is ∆-
transitive if and only if for any d ∈ N and pairwise distinct g1, . . . , gd ∈ G\{e},
there exists a point x ∈ X such that

{(gn1 x, gn2 x, . . . , gndx) : n ∈ N}

is dense in Xd.

Proof. The necessity is clear. Now we need to show the sufficiency. Fix d ∈ N.
Let U0, U1, . . . , Ud be non-empty open subsets of X. Choose h ∈ G such that
y = hx ∈ U0. Let g1, . . . , gd be pairwise distinct elements of G \ {e}. As G is
abelian, the set

{(gn1 y, gn2 y, . . . , gnd y) : n ∈ N}

is dense in Xd. Hence (gn1 y, g
n
2 y, . . . , g

n
d y) ∈ U1 × · · · × Ud for some n ∈ N.

Thus, y ∈
⋂d

i=1 g
−n
i (Ui). Then by Proposition 3.2, (X,G) is ∆-transitive. □

Example 3.4. Let X = {0, 1}Z and G = {σn : n = 0, 1, 2, . . .}. Then (X,G) is
the full shift ({0, 1}Z, σ). Since there is a point x ∈ {0, 1}Z such that for every
d ≥ 2, the diagonal d-tuple (x, x, . . . , x) has a dense orbit under the action
σ × σ2 × · · · × σd. Hence (X,G) is ∆-transitive by Lemma 3.3.

We say that (X,G) is ∆-A-weakly mixing if for every n ∈ N, (Xn, G) is ∆-
A-transitive. If A = N, then we say that (X,G) is ∆-weakly mixing. Now we
show that for a G-system and A ⊂ N, ∆-A-transitive and ∆-A-weakly mixing
are equivalent with G abelian by proving the following proposition.

Proposition 3.5. Let (X,G) be a G-system with G abelian and A ⊂ N. Then
the following conditions are equivalent:

(1) (X,G) is ∆-A-transitive;
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(2) the collection of hitting time sets

W :={N(U0;U1, . . . , Ud | g1, . . . , gd) ∩A : d ∈ N,
U0, U1, . . . , Ud are non-empty open subsets of X and

g1, . . . , gd are pairwise distinct elements in G \ {e}}

is a filter base;
(3) (X,G) is ∆-A-weakly mixing.

Proof. (1) ⇒ (2) By Proposition 3.2, for any d ∈ N, pairwise distinct g1, . . . , gd
∈ G \ {e} and non-empty open subsets U0, U1, . . . , Ud, the set

N(U0;U1, . . . , Ud | g1, . . . , gd) ∩A ̸= ∅.

For anyN(U0;U1, . . . , Ud | g1, . . . , gd)∩A andN(V0;V1, . . . , Vr|gd+1, . . . , gd+r)∩
A in W , choose g0 ∈ G\{e} such that g1, . . . , gd, g0, gd+1g0, . . . , gd+rg0 are pair-
wise distinct elements in G \ {e}.

Then for any n ∈ N(U0;U1, . . . , Ud, V0, V1, . . . , Vr | g1, . . . , gd, g0, gd+1g0, . . .,
gd+rg0) ∩A,

U0 ∩ g−n
1 U1 ∩ · · · ∩ g−n

d Ud ∩ g−n
0 V0 ∩ g−n

0 g−n
d+1V1 ∩ · · · ∩ g−n

0 g−n
d+rVr ̸= ∅.

Thus U0∩g−n
1 U1∩· · ·∩g−n

d Ud ̸= ∅ and V0∩g−n
d+1V1∩· · ·∩g−n

d+rVr ̸= ∅, which im-
plies that n ∈ N(U0;U1, . . . , Ud|g1, . . . , gd)∩N(V0;V1, . . . , Vr|gd+1, . . . , gd+r)∩
A. Then we have

N(U0;U1, . . . , Ud, V0, V1, . . . , Vr | g1, . . . , gd, g0, gd+1g0, . . . , gd+rg0) ∩A

⊂ N(U0;U1, . . . , Ud | g1, . . . , gd) ∩N(V0;V1, . . . , Vr|gd+1, . . . , gd+r) ∩A.

(2) ⇒ (3) Let m,n ≥ 1, g1, g2, . . . , gm be pairwise distinct elements of
G\{e} and U1,0, U2,0, . . . , Un,0, U1,1, U2,1, . . . , Un,1, . . . , U1,m, U2,m, . . . , Un,m be
non-empty open subsets of X. It is easy to check that

N(U1,0 × · · · × Un,0;U1,1 × · · · × Un,1, . . . , U1,m × · · · × Un,m|g1, g2, . . . , gm)

∩A

= N(U1,0;U1,1, . . . , U1,m | g1, g2, . . . , gm) ∩ · · ·
∩N(Un,0;Un,1, . . . , Un,m | g1, g2, . . . , gm) ∩A.

Since the collection of hitting time sets is a filter base, we know that the
intersection above is not empty. By Proposition 3.2, (Xn, G) is ∆-A-transitive.

(3) ⇒ (1) It is obvious. □

We immediately have the following.

Corollary 3.6. Let (X,G) be a G-system with G abelian and A ⊂ N. (X,G) is
∆-A-weakly mixing if and only if (Xn, G) is ∆-A-weakly mixing for all n ∈ N.

We have the following observations about the hitting time sets of ∆-transitive
systems for abelian semigroup actions.
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Proposition 3.7. Let (X,G) be a G-system with G abelian. Then the following
conditions are equivalent:

(1) (X,G) is ∆-transitive;
(2) for any d ∈ N, non-empty open subsets U0, U1, . . . , Ud of X and pairwise

distinct g1, . . . , gd ∈ G \ {e}, N(U0;U1, . . . , Ud | g1, . . . , gd) is thick of N;
(3) for any syndetic subset A of N, (X,G) is ∆-A-transitive.

Proof. (3) ⇒ (1) It is obvious.
(1) ⇒ (2) Let d ∈ N. Let U0, U1, U2, . . . , Ud be non-empty open subsets

of X and g1, . . . , gd be pairwise distinct elements of G \ {e}. By Proposi-
tion 3.5(2)with A = N, for any n ∈ N

N(U0;U1, . . . , Ud | g1, . . . , gd) ∩N(U0; g
−1
1 U1, . . . , g

−1
d Ud | g1, . . . , gd)

∩ · · · ∩N(U0; g
−n
1 U1, . . . , g

−n
d Ud | g1, . . . , gd) ̸= ∅.

Thus N(U0;U1, . . . , Ud | g1, . . . , gd) is thick of N.
(2) ⇒ (3) Let A be a syndetic subset of N. Let d ∈ N, U0, U1, . . . , Ud be

non-empty open subsets of X and g1, . . . , gd be pairwise distinct elements of
G \ {e}. Since the intersection of any thick set and a syndetic set is not empty,
then N(U0;U1, . . . , Ud | g1, . . . , gd) ∩ A ̸= ∅. By Proposition 3.2, this implies
that (X,G) is ∆-A-transitive. □

For n ≥ 2, we say that a non-empty subset F ⊂ G is an independent
set for (U1, U2, . . . , Un) if for every non-empty finite subset J ⊂ F and σ ∈
{1, 2, . . . , n}J , ⋂

g∈J

g−1Uσ(g) ̸= ∅.

We have the following characterization of ∆-transitivity by independent sets of
open sets.

Proposition 3.8. Let (X,G) be a G-system with G abelian. If (X,G) is
∆-transitive, then for any d ≥ 2, non-empty open subsets U1, . . . , Ud of X
and pairwise distinct g1, . . . , gd of G \ {e}, there exists n ∈ N such that J :=
{gn1 , . . . , gnd } is an independent set for (U1, . . . , Ud).

Proof. Fix d ≥ 2, non-empty open subsets V,U1, . . . , Ud of X and pairwise
distinct g1, . . . , gd of G \ {e}, by Proposition 3.5(2) with A = N, there exists
n ∈ N such that

n ∈
⋂

{N(V ;Us1 , . . . , Usd | g1, . . . , gd) : si ∈ {1, . . . , d}, i = 1, . . . , d}.

Now we show that J := {gn1 , . . . , gnd } is an independent set for (U1, . . . , Ud). It
is clear that for any σ ∈ {1, 2, . . . , d}J ,⋂

i∈{1,...,d}

(gni )
−1Uσ(gn

i ) ̸= ∅,

which implies that J is an independent set for (U1, . . . , Ud). □
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Let (X,G) be a G-system and a = (a1, . . . , ar) be a vector in Nr. We say
that the system (X,G) is ∆-a-transitive if there exists a dense subset X0 of
X such that for each x ∈ X0, {(ga1x, . . . , garx) : g ∈ G} is dense in Xr. In
[16], we defined a different ∆-transitivity and characterized ∆-a-transitivity
by F [a]-transitive points under semigroup actions. Here we obtain a similar
result.

Let d ∈ N and g1, . . . , gd be pairwise distinct elements of G \ {e}. We define
the family generated by g = {g1, . . . , gd}, denoted by F [g] as

{F ⊂ G : ∀h1, h2, . . . , hd ∈ G,∃n ∈ N s.t. h1g
n
1 , h2g

n
2 , . . . , hdg

n
d ∈ F}.

Theorem 3.9. Let (X,G) be a G-system with G a group. Then (X,G) is ∆-
transitive if and only if for any d ∈ N and pairwise distinct elements g1, . . . , gd
of G \ {e}, TransF [g](X,G) is residual in X, where g := {g1, . . . , gd}.

Proof. Necessity. Let {Bk : k ∈ N} be a countable base of open balls of X. For
any d ∈ N and pairwise distinct elements g1, . . . , gd of G \ {e}, set

Y =
⋂

(k1,k2,...,kd)∈Nd

⋃
n∈N

d⋂
i=1

g−n
i (Bki).

Since (X,G) is ∆-transitive, by Proposition 3.2 we obtain that Y is a dense
Gδ subset of X. Now we only need to show that Y ⊂ TransF [g](X,G). Choose
x ∈ Y and a non-empty open subset U of X. Let H = {h1, h2, . . . , hd} be a
finite subset of G. Then there exists (k1, k2, . . . , kd) ∈ Nd such that

Bk1 ×Bk2 × · · · ×Bkd
⊂ h−1

1 U × h−1
2 U × · · · × h−1

d U.

By the construction of Y , there exists n ∈ N such that x ∈
⋂d

i=1 g
−n
i (Bki), then

gni x ∈ Bki
⊂ h−1

i U for i = 1, 2, . . . , d. Hence we obtain that {h1g
n
1 , h2g

n
2 , . . . ,

hdg
n
d } ⊂ N(x, U) and x ∈ TransF [g](X,G).
Sufficiency. Let d ∈ N. For any non-empty open subsets U0, U1, U2, . . . , Ud

of X and pairwise distinct elements g1, . . . , gd of G \ {e}, there exists x ∈ U0

which is a F [g]-transitive point where g = {g1, . . . , gd}. Thus there exist
h1, . . . , hd such that hix ∈ Ui, i = 1, . . . , d. By the continuity of hi, there is
a neighborhood U of x such that hiU ⊂ Ui, i = 1, . . . , d. By the definition of
F [g]-transitive point, there is n ∈ N such that

(h−1
1 gn1 x, h

−1
2 gn1 x, . . . , h

−1
d gndx) ∈ U × · · · × U.

Thus gni x ⊂ Ui, i = 1, . . . , d. Therefore

N(U0;U1, . . . , Ud | g1, . . . , gd) ̸= ∅
and by Proposition 3.2 (X,G) is ∆-transitive. □

A factor map π : (X,G) → (Y,G) between two G-systems is a continuous
onto map satisfying that gπ = πg for every g ∈ G. We have the following.

Proposition 3.10. Let π : (X,G) → (Y,G) be a factor map between two
G-systems. If (X,G) is ∆-transitive, then so is (Y,G).
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Proof. Assume that (X,G) is ∆-transitive. Let d ∈ N. Let U0, U1, . . . , Ud

be non-empty open subsets of Y and g1, . . . , gd be pairwise distinct elements
of G \ {e}. Since (X,G) is ∆-transitive, N(π−1(U0);π

−1(U1), . . . , π
−1(Ud) |

g1, . . . , gd) ̸= ∅. Hence N(U0;U1, . . . , Ud | g1, . . . , gd) ̸= ∅. That is, (Y,G) is
∆-transitive. □

In [8], the author studied some properties of ∆-transitive subsets and ∆-
weakly mixing subsets for countable torsion-free discrete group actions. If G
is abelian, then by Proposition 3.5(2) with A = N we know that a G-system
is ∆-transitive if and only if it is ∆-weakly mixing. But this is no longer true
for ∆-transitive subsets and ∆-weakly mixing sets, as the authors proved that
they are not equivalent for Z-system in [5]. Here we define the local notions
of ∆-transitivity and ∆-weakly mixing for G-systems and obtain some similar
results.

Definition 3.11. Let (X,G) be a G-system and B be a closed subset of X
with |B| ≥ 2.

(1) we say that B is a ∆-transitive subset of (X,G) if there is a residual
subset B0 of B such that for any x ∈ B0, d ≥ 1 and pairwise distinct
g1, . . . , gd ∈ G \ {e}, the orbit closure of the d-tuple (x, x, . . . , x) under
the action g1 × g2 × · · · × gd contains Bd, i.e.,

{(gn1 x, gn2 x, . . . , gndx) : n ∈ N} ⊇ Bd.

(2) we say that B is a ∆-weakly mixing subset of (X,G) if Bm is a ∆-
transitive subset of (Xm, G) for any m ∈ N.

We can easily see that X is a ∆-transitive (resp. ∆-weakly mixing) subset
of (X,G) if and only if the G-system (X,G) is ∆-transitive (resp. ∆-weakly
mixing).

The proof of the following two lemmas are similar with Lemma 3.3 and
Proposition 3.4 of [8], we present the results without proof here.

Lemma 3.12. Let (X,G) be a G-system and B be a closed subset of X with
|B| ≥ 2. Then B is ∆-transitive if and only if for any d ∈ N, pairwise distinct
g1, . . . , gd ∈ G \ {e} and non-empty open subsets U0, U1, . . . , Ud of X with
Ui ∩B ̸= ∅, i = 0, . . . , d,

N(U0 ∩B;U1, . . . , Ud | g1, . . . , gd) ̸= ∅.

Lemma 3.13. Let (X,G) be a G-system and B be a closed subset of X with
|B| ≥ 2. Then B is a ∆-weakly mixing subset of X if and only if for any d ∈ N,
pairwise distinct g1, . . . , gd ∈ G \ {e}, non-empty open subsets U1, . . . , Ud and
V1, . . . , Vd of X with Ui ∩B ̸= ∅ and Vi ∩B ̸= ∅ for i = 1, . . . , d, we have⋂

σ∈{1,...,d}d+1

N(Vσ(1) ∩B;Uσ(2), . . . , Uσ(d+1) | g1, . . . , gd) ̸= ∅.
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We say that (X,G) is ∆-mixing if it is ∆-A-transitive for any infinite subset
A of N. We have the following equivalent condition about ∆-mixing.

Corollary 3.14. Let (X,G) be a G-system. Then (X,G) is ∆-mixing if and
only if for any d ∈ N, pairwise distinct g1, . . . , gd ∈ G \ {e}, non-empty open
subsets U0, U1, . . . , Ud,

N \N(U0;U1, . . . , Ud | g1, . . . , gd)

is finite.

Proof. Necessity. Assume that there exist d ∈ N, pairwise distinct g1, . . . , gd ∈
G \ {e} and non-empty open subsets U0, U1, . . . , Ud such that the set N \
N(U0;U1, . . . , Ud | g1, . . . , gd) is infinite. Then there exists an infinite sub-
set A := N \ N(U0;U1, . . . , Ud | g1, . . . , gd) such that A ∩ N(U0;U1, . . . , Ud |
g1, . . . , gd) = ∅, which implies that (X,G) is not ∆-A-transitive by Proposi-
tion 3.2, contradiction.

Sufficiency. If there exists an infinite subset A such that (X,G) is not ∆-
A-transitive, then by Proposition 3.2, there exist d ∈ N, pairwise distinct
g1, . . . , gd ∈ G \ {e} and non-empty open subsets U0, U1, . . . , Ud such that
A∩N(U0;U1, . . . , Ud | g1, . . . , gd) = ∅, then N\N(U0;U1, . . . , Ud | g1, . . . , gd) ⊃
A is an infinite set, contradiction. □

We immediately have the following statements.

Corollary 3.15. If (X,G) is ∆-mixing, then it is strongly mixing.

Example 3.16. Let X = Rn/Zn (n ≥ 2) and G = SL(n,Z). Then it is the
linear action of SL(n,Z) on the torus Rn/Zn, see Example 8 in [2]. Since
the action is not strongly mixing, we obtain that (X,G) is not ∆-mixing by
Corollary 3.15.

Corollary 3.17. (X,G) is ∆-mixing if and only if (Xn, G) is ∆-mixing for
all n ∈ N.

Corollary 3.18. If (X,G) is ∆-mixing, then it is ∆-A-weakly mixing for any
infinite subset A.

Proof. Suppose (X,G) is ∆-mixing, then (Xn, G) is ∆-mixing for all n ∈ N by
Corollary 3.17. Hence (Xn, G) is ∆-A-transitive for any infinite subset A of N.
Then (X,G) is ∆-A-weakly mixing for any infinite subset A. □
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