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THE RECURRENT HYPERCYCLICITY CRITERION FOR

TRANSLATION C0-SEMIGROUPS ON COMPLEX SECTORS

Yuxia Liang, Zhi-Yuan Xu, and Ze-Hua Zhou

Abstract. Let {Tt}t∈∆ be the translation semigroup with a sector ∆ ⊂
C as index set. The recurrent hypercyclicity criterion (RHCC) for the

C0-semigroup {Tt}t∈∆ is established, and then the equivalent conditions

ensuring {Tt}t∈∆ satisfying the RHCC on weighted spaces of p-integrable
and of continuous functions are presented. Especially, every chaotic semi-

group {Tt}t∈∆ satisfies the RHCC.

1. Introduction

Let X be a separable infinite dimensional Banach space and L(X) denote
the space of linear continuous operators on X. As usual, R (R+

0 ) is the set of
all (non-negative) real numbers, N is the set of all natural numbers and C is
the complex plane. Throughout the paper, our semigroups have an index set,
a sector ∆ in the complex plane of the form

∆ = ∆(α) := {reiθ : r ≥ 0, |θ| ≤ α} ⊂ C

for some 0 < α ≤ π/2, or ∆ = C. For ∆ = ∆(α) with 0 < α ≤ π/2, let ∂∆
denote the boundary of ∆. Given τ ∈ ∆ and r > 0, we define ∆r := {t ∈
∆ : |t| ≤ r} and ∆−1

r (τ) := {t ∈ ∆ : there is s ∈ ∆r such that τ = t + s}.
Moreover, we set

∆r \∆r′ : = {z ∈ ∆r : z /∈ ∆r′}

for given 0 ≤ r′ < r.
We say an operator T ∈ L(X) is hypercyclic if there exists a vector x ∈

X such that the orbit Orb(T, x) := {Tnx : n ∈ N} is dense in X, and x
is the hypercyclic vector for T . The notion of hypercyclic vectors arises in
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the study of invariant subsets. Recall that an operator T ∈ L(X) admits no
non-trivial closed invariant subset if and only if every non-zero vector in X
is hypercyclic for T . Hypercyclicity is one of most studied notions in linear
dynamics, which has closed relation with topologically transitivity, mixing and
chaos (cf. [15–17]). In recent years, the notation recurrence, posed by Poincaré
and Birkhoff, attracted lots of attention. More specially, an operator T ∈ L(X)
is called recurrent if for every open set U ⊂ X, there exists some k ∈ N such
that U ∩ T−k(U) ̸= ∅. More details on recurrent operators can be found in the
recent articles [3, 4, 9, 10, 34]. For motivation, more examples and background
about linear dynamics we refer the readers to the excellent books [2,18], recent
articles [14,20,32] and their references therein.

Later, different phenomena related with hypercyclicity have been developed
into dynamical systems defined by C0-semigroups of operators, which are also
observed from the first order partial differential equations and the mathematical
models of cell population dynamics (cf. [21, 23, 24, 31]). Recall that a one-
parameter family T = {Tt}t∈∆ of linear continuous operators in L(X) is a
strongly continuous semigroup (or C0-semigroup) of operators in L(X) provided
that T0 = I, TtTs = Tt+s for all t, s ∈ ∆, and limt→s Ttx = Tsx for all s ∈ ∆,
x ∈ X. Within the context, we always mean a semigroup is a C0-semigroup and
any semigroup {Tt}t∈∆ is locally equicontinuous, i.e., for any t0 > 0 the family
of linear continuous operators {Tt : |t| ≤ t0} is equicontinuous. Moreover, to
avoid degenerated cases, we assume that all the operators in the C0-semigroup
have dense range.

Recall that T = {Tt}t∈∆ of operators in L(X) is said to be topologically
transitive if for any pair of nonempty open sets U , V , there exists some t0 ∈ ∆
such that Tt0(U) ∩ V ̸= ∅. The orbit of x under T is defined as Orb(T , x) :=
{Ttx : t ∈ ∆}. If there exists some element with dense orbit, T is hypercyclic,
which is equivalent to T is topologically transitive when X is a separable infinite
dimensional Banach space (cf. [6]). Furthermore, T is called weakly mixing if
the 2-fold product system T ⊕ T is topologically transitive on X × X. Given
x ∈ X, if there exists nonzero t ∈ ∆ such that Ttx = x, then x is said to be a
periodic point for T . A hypercyclic semigroup T with a dense set of periodic
points is said to be chaotic (in the sense of Devaney).

In the linear function spaces, the first well-known example of a hypercyclic
semigroup was the translation semigroup on the space of entire functions (see,
e.g. [13, 30]), which is also mixing and chaotic. The translation semigroup on
the weighted function spaces Lp

ρ(I) and C0,ρ(I) is characterized to be hyper-
cyclic, chaotic, supercyclic according to the property of the admissible weight
function ρ, where I = R+ or I = R (see, e.g. [25–27, 33]). The situation for
semigroup {Tt}t∈∆ with index set ∆ is much more complicated, and their be-
havior is much richer. As far as we are concerned, the chaos, hypercyclicity
and supercyclicity of the translation semigroup on the weighted function spaces
Lp
ρ(∆) and C0,ρ(∆) have been investigated in the recent papers [7,8,22]. Very

recently, some broader characterizations for a general F-transitive translation
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semigroup on a complex sector were presented in [19] with a Furstenberg family
F , which are equivalent to recurrence property in a very weak sense. As an ex-
tension, we will offer more technical methods to describe recurrent translation
semigroup defined on X := Lp

ρ(∆) or C0,ρ(∆), where ρ is an admissible weight
function on the sector ∆. This work could also be seen as a generalization of
the work in [12]. Here we will use more general syndetic subsets (see, e.g. [29])
of the complex sector ∆ to consider the recurrence.

For completeness, an admissible weight function ρ on ∆ is introduced to
define the weighted function spaces Lp

ρ(∆), C0,ρ(∆), and the translation semi-
group.

Definition 1.1 ([8, Definition 4.1]). Let ∆ be a complex sector. A measurable
function ρ : ∆ → R is said to be an admissible weight function if it satisfies
ρ(t) > 0 for every t ∈ ∆, and there exist constants M ≥ 1 and w ∈ R such that

ρ(t1) ≤ Mew|t2|ρ(t1 + t2) for all t1, t2 ∈ ∆.

Hereafter, ρ always denotes an admissible weight function on ∆, and M,w
are the constants given in Definition 1.1. Especially, we can suppose w ≥ 0 for
convenience. Let [t, s] denote the segment in ∆ whose endpoints are t and s.
The following lemma is a technical result for admissible weight function ρ.

Lemma 1.1 ([8, Lemma 4.2]). For every r > 0, there exist constants 0 < A <
B, depending on ρ and r, such that for every t ∈ ∆, t′ ∈ ∆r, s ∈ [t, t+ t′], we
have that Aρ(t) ≤ ρ(s) ≤ Bρ(t+ t′).

Definition 1.2 ([7, Definition 4.5]). For 1 ≤ p < ∞, we define the space

Lp
ρ(∆) = {u : ∆ → C : u measurable and ∥u∥p < ∞},

with ∥u∥p := (
∫
∆
|u(τ)|pρ(τ)dτ)1/p, and the space

C0,ρ(∆) = {u : ∆ → C : u continuous and lim
τ→∞

u(τ)ρ(τ) = 0},

with ∥u∥∞ := supτ∈∆ |u(τ)|ρ(τ).

Definition 1.3. Let X be one of the spaces Lp
ρ(∆) or C0,ρ(∆). For t ∈ ∆ and

u ∈ X we define Ttu as Ttu(s) := u(s + t) for every s ∈ ∆. We call {Tt}t∈∆

the translation semigroup on X.

Next we present the definition for the discretization of the C0-semigroup
{Tt}t∈∆ to state the hypercyclicity criterion (HCC) for the semigroup {Tt}t∈∆.

Definition 1.4 ([18, p. 192]). A discretization of {Tt}t∈∆ is a sequence of
operators {Ttn}n in the semigroup, where {tn}n ⊂ ∆ is an arbitrary sequence
such that limn→∞ tn = ∞. If there is t ̸= 0 such that tn = nt for each n ∈ N,
then {Ttn}n = {Tn

t }n is called an autonomous discretization of {Tt}t∈∆.
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Hypercyclicity criterion (HCC) for {Tt}t∈∆ (cf. [8, Criterion 3.1])

Let {Tt}t∈∆ be a semigroup in L(X). If there exist a sequence {tn}n ⊂ ∆
with limn→∞ tn = ∞, dense subsets Y, Z ⊂ X, and maps Stn : Z → X, n ∈ N,
such that

(1) limn→∞ Ttny = 0 for every y ∈ Y ,
(2) limn→∞ Stnz = 0 for every z ∈ Z,
(3) limn→∞ TtnStnz = z for every z ∈ Z,

then {Tt}t∈∆ is weakly mixing (in particular, hypercyclic). We say that {Tt}t∈∆

satisfies the HCC.
Using the fact {Tt}t∈∆ is weakly mixing, we obtain an equivalent definition.

Definition 1.5. A semigroup {Tt}t∈∆ on X satisfies the HCC if and only if
for all nonempty open sets U, V ⊂ X and all neighborhoods W ⊂ X of 0 there
exists some t ∈ ∆ such that

TtU ∩W ̸= ∅ and TtW ∩ V ̸= ∅.

(Notice that the same t satisfies both conditions.)

2. Main results

In this section, we aim to characterize the recurrent translation C0-semigroup
{Tt}t∈∆ acting on Lp

ρ(∆) or C0,ρ(∆). Here we explore the equivalent character-
izations for {Tt}t∈∆ satisfying the recurrent hypercyclicity criterion (RHCC),
which is a sufficient condition for recurrence. We first prove Definition 1.5 is
true when the translation semigroup {Tt}t∈∆ is hypercyclic.

Proposition 2.1 ([8, Theorem 4.8]). Let {Tt}t∈∆ be the translation semigroup.
(1) If ∆ ̸= R+

0 , R or C, then {Tt}t∈∆ is hypercyclic if and only if there is a
sequence {sk}k ⊂ ∆ such that limk→∞ d(sk, ∂∆) = ∞ and limk→∞ ρ(sk) = 0.

(2) If ∆ = C, then {Tt}t∈∆ is hypercyclic if and only if there exist θ ∈ C
and a sequence {tk}k ⊂ C tending to ∞ and verifying

lim
k→∞

ρ(θ + tk) = lim
k→∞

ρ(θ − tk) = 0.

Furthermore, the semigroup {Tt}t∈∆ satisfies Definition 1.5 in both cases.

Proof. Let U, V ⊂ X be nonempty open sets and W = {f ∈ X : ∥f∥ < ϵ}.
Choose two functions u ∈ U, v ∈ V satisfying suppu ⊂ ∆τ and supp v ⊂ ∆τ

for some τ > 0.
(1) If ∆ ̸= R+

0 , R or C, there exists a sequence {sk}k ⊂ ∆ satisfying

d(sk, ∂∆) > 3k and ρ(sk) ≤
1

kMe3kw

with M, w given in Definition 1.1. Taking tk := sk − 2k ∈ ∆, k ∈ N, it holds
that

lim
k→∞

Ttku = 0 for u ∈ U.(2.1)
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Using v ∈ V , define

Skv(t) :=

{
v(t− tk), if t ∈ tk +∆τ ,
0, else.

It yields that TtkSkv = v for every k ∈ N. Hereafter, we only consider our
estimates on X = Lp

ρ(∆), and for the case X = C0,ρ(∆) the same estimates
work with p = 1 and all integrals replaced by suprema. Lemma 1.1 implies
there is A > 0 such that

∥v∥p =

∫
∆τ

|v(t)|pρ(t)dt ≥ Aρ(0)

∫
∆τ

|v(t)|pdt.(2.2)

Then for k > τ , it follows tk+∆τ ⊂ ∆−1
3k (sk) and ρ(t) ≤ Mew|sk−t|ρ(sk) ≤ 1/k

for t ∈ tk +∆τ . So (2.2) entails that

∥Skv∥p =

∫
tk+∆τ

|v(t− tk)|pρ(t)dt ≤
1

k

∫
∆τ

|v(t)|pdt ≤ ∥v∥p

kAρ(0)
.

This implies that

(2.3) lim
k→∞

Skv = 0 for v ∈ V.

For the set W = {f ∈ X : ∥f∥ < ϵ}, equations (2.1) and (2.3) ensure there
exits tk ∈ ∆ such that Ttku ∈ W and Skv ∈ W . Since TtkSkv = v ∈ V , it
yields that

(2.4) TtkU ∩W ̸= ∅ and TtkW ∩ V ̸= ∅.

This means the semigroup {Tt}t∈∆ of case (1) satisfies Definition 1.5.
(2) If ∆ = C. Suppose that there exist θ ∈ C and {tk}k ⊂ C such that

ρ(θ + tk) ≤
1

kMe2kw
and ρ(θ − tk) ≤

1

kMe2kw

with M ≥ 1, w > 0 given in Definition 1.1. Let τ > |θ|, Definition 1.1 implies

ρ(s) ≤ Mew2τρ(θ + tk) for s ∈ tk +∆τ ;(2.5)

ρ(s) ≤ Mew2τρ(θ − tk) for s ∈ −tk +∆τ .(2.6)

On the space Lp
ρ(∆), by (2.6) we obtain that

∥Ttku∥p =

∫
−tk+∆τ

|u(s+ tk)|pρ(s)ds ≤
1

k

∫
∆τ

|u(s)|pds

for every k ≥ τ . Replacing v by u in equation (2.2), we deduce that

∥Ttku∥ ≤
(

1

Aρ(0)k

)1/p

∥u∥,

implying limk→∞ Ttku=0 for u ∈ U . Similarly, by (2.5), it yields limk→∞ T−tkv
= 0 for v ∈ V . Hence there exists tk ∈ C such that (2.4) holds for the nonempty
sets U, V,W , implying {Tt}t∈∆ of case (2) satisfies Definition 1.5. □
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There follows the recurrent hypercyclicity criterion for the semigroup
{Tt}t∈∆, which can be seen as an extension of [12, Definition 2.1].

Definition 2.1 (Recurrent hypercyclicity criterion (RHCC) for {Tt}t∈∆). A
semigroup {Tt}t∈∆ satisfies the RHCC if and only if

(a) ∀ nonempty open set U ⊂ X, and ∀ W ⊂ X, neighborhood of 0, there
exists L1 > 0 such that for any t ∈ ∆, there exists s ∈ t + ∆L1

, s ̸= t, such
that TsU ∩W ̸= ∅;

(b) ∀ nonempty open set V ⊂ X, and ∀ W ⊂ X, neighborhood of 0, there
exists L2 > 0 such that for any t ∈ ∆, there exists s ∈ t + ∆L2

, s ̸= t, such
that TsW ∩ V ̸= ∅.

Following [8, Proposition 2.2] and [32, Definition 1.4], an equivalent descrip-
tion for the semigroup {Tt}t∈∆ fulfilling the RHCC is obtained.

Proposition 2.2. A semigroup {Tt}t∈∆ satisfies the RHCC if and only if for
all nonempty open subsets U, V,W ⊂ X with 0 ∈ W , there exists L > 0 such
that for any t ∈ ∆, there exists s ∈ t+∆L, s ̸= t, such that TsU ∩W ̸= ∅ and
TsW ∩ V ̸= ∅.

Proof. Sufficiency. The semigroup {Tt}t∈∆ satisfies the RHCC with L1 = L2 =
L.

Necessity. Let U, V,W be nonempty open subsets of X with 0 ∈ W .
(i) Since {Tt}t∈∆ satisfies the RHCC, there exists L1 > 0 such that for any

t ∈ ∆, there exists λ ∈ t+∆L1 , λ ̸= t, such that TλW ∩ V ̸= ∅.
(ii) Choose a neighborhood Ŵ of 0 such that TtŴ ⊂ W for all t ∈ ∆L1

.
(iii) At the same time, there exists L2 > 0 such that for any t ∈ ∆ there are

γ ∈ t+∆L2
, γ ̸= t and u ∈ U such that Tγu ∈ Ŵ .

Denote L := L1 + L2. For any t ∈ ∆, choose γ and u as stated in (iii).
For γ ∈ ∆, (i) implies there exists s ∈ γ + ∆L1 ⊂ t + ∆L, s ̸= γ, s ̸= t such
that TsW ∩ V ̸= ∅. The fact {Tt}t∈∆ is a C0-semigroup together with (ii)-(iii)

yields that Tsu = Ts−γTγu ∈ Ts−γŴ ⊂ W , this means TsU ∩W ̸= ∅, ending
the proof. □

It is obvious that the RHCC is a strengthened version of the HCC. It has
been proved that a semigroup {Tt} satisfies the HCC if and only if the product
semigroup {Tt ⊕ Tt} on X × X is hypercyclic. [12, Theorem 5.1] shows that
the RHCC is a necessary and sufficient condition on a semigroup {Tt}t∈J such
that its product with any semigroup {St}t∈J satisfying the HCC. That is, {Tt⊕
St}t∈J on X ×X is again hypercyclic, where J = N (see [5]) or J = [0,∞) (see
[28]). Especially, Desch and Schappacher obtained the equivalent conditions
for {Tt}t∈I satisfying the RHCC, where I = [0,∞) and I = (−∞,∞). We
summarize them as below.

Theorem 2.3 ([12, Theorem 4.6]). Let I = [0,∞), let ρ be an admissible
weight function on I, and let X be one of the spaces C0,ρ(I,R) or Lp

ρ(I,R).
Then the following assertions are equivalent:
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(a) The translation semigroup {Tt}t∈I on X satisfies the RHCC.
(b) For each ϵ > 0 there exist a constant L > 0 and an increasing sequence

tk → ∞ with ρ(tk) ≤ ϵ and tk+1 − tk ≤ L.

Theorem 2.4 ([12, Theorem 4.7]). Let I = (−∞,∞), let ρ be an admissible
weight function on I, and let ρ1(t) = ρ(−t) be also admissible. Let X be one
of the spaces C0,ρ(I,R) or Lp

ρ(I,R). The translation semigroup {Tt}t∈I on X
satisfies the RHCC if and only if for each ϵ > 0 there exist a constant L > 0 and
two increasing sequences sk, tk → ∞ with ρ(tk) ≤ ϵ, ρ(−sk) ≤ ϵ, tk+1 − tk ≤ L
and sk+1 − sk ≤ L.

Inspired by the above results, we continue to explore the characterizations of
{Tt}t∈∆ satisfying the RHCC on the spaces Lp

ρ(∆) and C0,ρ(∆) with a complex

sector ∆ ⊂ C. The first theorem settles the case {T (t)}t∈∆ with ∆ ̸= R+
0 , R, C.

Theorem 2.5. Let ∆ ̸= R+
0 , R, C and {Tt}t∈∆ be the translation semigroup

on X := Lp
ρ(∆) or C0,ρ(∆), where ρ is an admissible weight function on the

sector ∆. Then the following statements are equivalent:
(a) The translation semigroup {Tt}t∈∆ on X satisfies the RHCC.
(b) There exist a constant L > 0 and a sequence {tk}k ⊂ ∆ such that

limk→∞ d(tk, ∂∆) = ∞ and limk→∞ ρ(tk) = 0 with tk+1 ∈ tk +∆L, tk+1 ̸= tk.

Proof. (a)⇒(b) Since ρ(t) > 0 for all t ∈ ∆, we define Dk := sup{ρ(s) : s ∈
k +∆1} > 0, k ∈ N \ {0}, and choose {uk}k ⊂ X such that suppuk ⊂ k +∆1

satisfying infk ∥uk∥ := δ > 0. Since {Tt}t∈∆ satisfies the RHCC, there exist a
constant L > 1, a sequence {vk}k ⊂ X and an increasing sequence in modulus
{sk}k ⊂ ∆ such that

∥vk∥ <
1

(kDk)1/p
and ∥Tskvk − uk∥ <

1

k

with sk+1 ∈ sk + ∆L−1, sk+1 ̸= sk. Define tk := sk + k ∈ ∆, k ∈ N \ {0}, it
yields that limk→∞ d(tk, ∂∆) = ∞ and tk+1 ∈ tk + ∆L, tk+1 ̸= tk. Take the
functions wk = vkχtk+∆1 , where χtk+∆1 is the characteristic function of the
set tk +∆1, k ∈ N \ {0}. Thus it holds that

∥Tskwk − uk∥ <
1

k
.

On the space X = Lp
ρ(∆) (the same estimates work with p = 1 and all integrals

replaced by supremum can imply the case X = C0,ρ(∆)), Lemma 1.1 entails
that

∥Tskwk∥p =

∫
k+∆1

|wk(s+ sk)|pρ(s)ds ≤ Dk

∫
tk+∆1

|vk(s)|pds

≤ Dk

Aρ(tk)
∥vk∥p.
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Hence we deduce that

0 < δ ≤ ∥uk∥ ≤ 1

k
+

(
1

Akρ(tk)

)1/p

,

implying limk→∞ ρ(tk) = 0 with limk→∞ d(tk, ∂∆) = ∞ and tk+1 ∈ tk +
∆L, tk+1 ̸= tk.

(b)⇒(a) Let U, V,W be nonempty open sets with 0 ∈ W . Take u ∈ U and
v ∈ V , respectively, with suppu ⊂ ∆τ and supp v ⊂ ∆τ for some τ > 0. By the
condition (b), there exist a constant L > 2 and a sequence {tk}k ⊂ ∆ verifying

ρ(tk) ≤ 1/(kMe3kw) and d(tk, ∂∆) > 3k

with tk+1 ∈ tk +∆L−2, tk+1 ̸= tk and M, w given in Definition 1.1. Choosing
sk := tk − 2k ∈ ∆, k ∈ N, it follows that limk→∞ Tsku = 0 for u ∈ U with
sk+1 ∈ sk +∆L. For k > τ , using Definition 1.1, we have

(2.7) ρ(s) ≤ Mew|tk−s|ρ(tk) ≤
1

k
for s ∈ sk +∆τ .

Setting

wk(s) =

{
v(s− sk), s ∈ sk +∆τ ,
0, else,

it follows suppwk ⊂ sk + ∆τ . On the space X = Lp
ρ(∆), by (2.7) we deduce

that

(2.8) ∥wk∥p =

∫
sk+∆τ

|v(s− sk)|pρ(s)ds ≤
1

k

∫
∆τ

|v(s)|pds.

At the same time, (2.2) is also true. Combining (2.8) with (2.2) we obtain that

∥wk∥p <
∥v∥p

kAρ(0)
.

Let k be large enough so that wk ∈ W , while Tskwk = v ∈ V . So TskU ∩W ̸= ∅
and TskW ∩ V ̸= ∅ with sk+1 ∈ sk + ∆L, sk+1 ̸= sk. In sum, there exists a
constant L > 0 such that for any t ∈ ∆, there exists s ∈ t+∆L, s ̸= t such that
TsU ∩W ̸= ∅ and TsW ∩ V ̸= ∅. This means (a) holds, ending the proof. □

Next theorem concerns the case {T (t)}t∈∆ with ∆ = C.

Theorem 2.6. Let ∆ = C and {Tt}t∈∆ be the translation semigroup on X :=
Lp
ρ(∆) or C0,ρ(∆), where ρ is an admissible weight function on ∆. Then the

following statements are equivalent:
(a) The translation semigroup {Tt}t∈∆ on X satisfies the RHCC.
(b) There exist a constant L > 0 and two sequences {tk}k, {sk}k ⊂ C tending

to ∞ and verifying limk→∞ ρ(tk) = limk→∞ ρ(−sk) = 0 with tk+1 ∈ tk +∆L,
tk+1 ̸= tk and sk+1 ∈ sk +∆L, sk+1 ̸= sk.

Proof. (a)⇒(b) Let χ : ∆ → [0, 1] be a continuous function with support
contained in ∆1 and denote the set

V = {f ∈ X : ∥χf∥ > 1}.
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Given any η > 0, let W = {f ∈ X : ∥f∥ < η}. Since {Tt}t∈∆ satisfies the
RHCC, there exist a constant L > 0 and a sequence {tk}k ⊂ ∆ as well as
wk ∈ W such that Ttkwk ∈ V with tk+1 ∈ tk +∆L, tk+1 ̸= tk. Then it yields
that

∥χ · Ttkwk∥
∥wk∥

>
1

η
.

In particular, we have that

∥χ · Ttkwk∥p

∥wk∥p
=

∫
∆
|χ(s) · Ttkwk(s)|pρ(s)ds∫

∆
|wk(s)|pρ(s)ds

≤ sup
s∈∆1

[
|χ(s)|p ρ(s)

ρ(s+ tk)

] ∫
∆
|wk(s+ tk)|pρ(s+ tk)ds∫

∆
|wk(s)|pρ(s)ds

= sup
s∈∆1

|χ(s)|p ρ(s)

ρ(s+ tk)
.

So it follows that

1

ηp
< sup

s∈∆1

|χ(s)|p ρ(s)

ρ(s+ tk)
≤ 1p sup

s∈∆1

ρ(s)

ρ(s+ tk)
.

This means

sup
s∈∆1

ρ(s)

ρ(s+ tk)
>

1

ηp
.(2.9)

By Definition 1.1, it yields that

ρ(tk) ≤ ρ(s+ tk)Mew|s| ≤ ρ(s+ tk)Mew(2.10)

for any s ∈ ∆1. By (2.9) and (2.10), we get that

Mew

ρ(tk)
sup
s∈∆1

ρ(s) >
1

ηp
,

which can be changed into

ρ(tk) < ηpMew sup
s∈∆1

ρ(s).

For any ϵ > 0, we choose η sufficiently small such that

ηpMew sup
s∈∆1

ρ(s) ≤ ϵ,

then ρ(tk) < ϵ with tk+1 ∈ tk + ∆L, tk+1 ̸= tk. Analogously, there exists
{sk}k ⊂ C tending to ∞ such that ρ(−sk) < ϵ with sk+1 ∈ sk+∆L, sk+1 ̸= sk.
That is, (b) holds.

(b)⇒(a) Let U, V,W be nonempty open sets with 0 ∈ W . Let u ∈ U and
v ∈ V , respectively, satisfying suppu ⊂ ∆τ and supp v ⊂ ∆τ for some τ > 0.
By (b), there exist L > 0 and two sequences {tk}k, {sk}k ⊂ C tending to ∞
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and satisfying tk+1 ∈ tk +∆L, tk+1 ̸= tk and sk+1 ∈ sk +∆L, sk+1 ̸= sk, such
that

ρ(tk) <
1

kMe2wτ
and ρ(−sk) <

1

kMe2wτ
,

with M ≥ 1, w > 0 given in Definition 1.1. And then it is true that

ρ(s) ≤ Mewτρ(−sk) for s ∈ −sk +∆τ .

We deduce that

∥Tsku∥p =

∫
−sk+∆τ

|u(s+ sk)|pρ(s)ds

≤
∫
−sk+∆τ

|u(s+ sk)|pdsMewτρ(−sk)

<
1

k

∫
∆τ

|u(s)|pds.(2.11)

On the other side, Lemma 1.1 entails that

(2.12) ∥u∥p ≥ Aρ(0)

∫
∆τ

|u(s)|pds.

Combining (2.11) with (2.12) we conclude that

∥Tsku∥ ≤
(

1

Aρ(0)k

) 1
p

∥u∥.

So TskU ∩ W ̸= ∅ holds for sufficiently large k. Similarly, we can deduce
T−tkv ∈ W for sufficiently large k. Since TtkT−tkv = v ∈ V , it yields that
TtkW ∩ V ̸= ∅ for sufficiently large k. Since tk+1 ∈ tk + ∆L, tk+1 ̸= tk
and sk+1 ∈ sk + ∆L, sk+1 ̸= sk, it follows that for any t ∈ ∆, there exist
t1, t2 ∈ t+∆L, ti ̸= t with i = 1, 2, such that Tt1U ∩W ̸= ∅ and Tt2W ∩V ̸= ∅.
Therefore the semigroup {Tt}t∈C satisfies the RHCC, ending the proof. □

There are several types of chaotic behaviours for discrete or continuous dy-
namical systems (see, e.g. [1, 11]). We continue to present the relationship
between chaotic (in the sense of Devaney) semigroup and the semigroup satis-
fying the RHCC on the sector ∆ analogous to [12, Section 6]. Since the proof
is a minor modification of [12, Lemma 6.1], we omit the details.

Lemma 2.7. Let {Tt}t∈∆ be a semigroup on a Banach space X. The following
assertions are equivalent:

(a) {Tt}t∈∆ satisfies the RHCC.
(b) (b1) ∀ nonempty open set U ⊂ X, and ∀ W ⊂ X, neighborhood of 0,

there exists t ∈ ∆ such that TtU ∩W ̸= ∅;
(b2) ∀ nonempty open set V ⊂ X and ∀ W ⊂ X, neighborhood of 0, there

exists t ∈ ∆ such that TtW ∩ V ̸= ∅;
(b3) ∀ nonempty open set U ⊂ X, there exists L > 0 such that for ∀ t ∈

∆, ∃ s ∈ t+∆L, s ̸= t, such that TsU ∩ U ̸= ∅.
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Lemma 2.7 immediately implies the corollary below.

Corollary 2.8. Any chaotic semigroup {Tt}t∈∆ satisfies the RHCC.
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