DOI QR코드

DOI QR Code

Stability analysis of drug delivery equipment in sports and exercise actions

  • Cuijuan Wang (Physical Education College, Shandong University of Finance and Economics)
  • 투고 : 2022.03.21
  • 심사 : 2022.07.04
  • 발행 : 2023.02.25

초록

Nanomotors are gaining popularity as novel drug delivery methods since they can move rapidly, penetrate deeply into tissues, and be regulated. The ability of manufactured nanomotors to swiftly transport therapeutic payloads to their intended location constitutes a revolutionary nanomedicine strategy. The nanomotors for the drug delivery purpose are released in the blood flow under the different physical conditions, so the stability investigation of these devices is essential before the production, especially in the sport and physical exercise conditions that the blood flow enhances. As a result, using dynamic analysis, this article investigates the stability of the nanomotor released in the blood flow when sport and physical activity circumstances increase blood flow. The considered nanodevice is made of a central motor, and nanotubes are used for the nanomotor blade, which is the drug capsule. Finally, the stability examination of nanomotor as the drug delivery equipment is discussed in detail, and the proposed results can present beneficial results in designing and producing small-scale intelligent devices.

키워드

참고문헌

  1. Adamian, A., Safari, K.H., Sheikholeslami, M., Habibi, M., Al-Furjan, M. and Chen, G. (2020), "Critical temperature and frequency characteristics of GPLs-reinforced composite doubly curved panel", Appl. Sci., 10(9), 3251. https://doi.org/10.3390/app10093251.
  2. Al-Furjan, M., Dehini, R., Khorami, M., Habibi, M. and won Jung, D. (2020a), "On the dynamics of the ultra-fast rotating cantilever orthotropic piezoelectric nanodisk based on nonlocal strain gradient theory", Compos. Struct., 112990. https://doi.org/10.1016/j.compstruct.2020.112990.
  3. Al-Furjan, M., Fereidouni, M., Habibi, M., Abd Ali, R., Ni, J. and Safarpour, M. (2020b), "Influence of in-plane loading on the vibrations of the fully symmetric mechanical systems via dynamic simulation and generalized differential quadrature framework", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-020-01177-7.
  4. Al-Furjan, M., Fereidouni, M., Sedghiyan, D., Habibi, M. and won Jung, D. (2020c), "Three-dimensional frequency response of the CNT-Carbon-Fiber reinforced laminated circular/annular plates under initially stresses", Compos. Struct., 113146. https://doi.org/10.1016/j.compstruct.2020.113146.
  5. Al-Furjan, M., Habibi, M., won Jung, D. and Safarpour, H. (2020d), "Vibrational characteristics of a higher-order laminated composite viscoelastic annular microplate via modified couple stress theory", Compos. Struct., 113152. https://doi.org/10.1016/j.compstruct.2020.113152.
  6. Al-Furjan, M., Moghadam, S.A., Dehini, R., Shan, L., Habibi, M. and Safarpour, H. (2020e), "Vibration control of a smart shell reinforced by graphene nanoplatelets under external load: Semi-numerical and finite element modeling", Thin Wall. Struct., 107242. https://doi.org/10.1016/j.tws.2020.107242.
  7. Al-Furjan, M., Oyarhossein, M.A., Habibi, M., Safarpour, H. and Jung, D.W. (2020f), "Frequency and critical angular velocity characteristics of rotary laminated cantilever microdisk via two-dimensional analysis", Thin Wall. Struct., 157, 107111. https://doi.org/10.1016/j.tws.2020.107111.
  8. Al-Furjan, M.S.H., Dehini, R., Khorami, M., Habibi, M. and won Jung, D. (2021), "On the dynamics of the ultra-fast rotating cantilever orthotropic piezoelectric nanodisk based on nonlocal strain gradient theory", Compos. Struct., 255, 112990. https://doi.org/10.1016/j.compstruct.2020.112990.
  9. Azimi, M., Mirjavadi, S.S., Shafiei, N. and Hamouda, A.M.S. (2016), "Thermo-mechanical vibration of rotating axially functionally graded nonlocal Timoshenko beam", Appl. Phys. A, 123(1), 104. https://doi.org/10.1007/s00339-016-0712-5.
  10. Azimi, M., Mirjavadi, S.S., Shafiei, N., Hamouda, A.M.S. and Davari, E. (2018), "Vibration of rotating functionally graded Timoshenko nano-beams with nonlinear thermal distribution", Mech. Adv. Mater. Struct., 25(6), 467-480. https://doi.org/10.1080/15376494.2017.1285455.
  11. Bai, Y., Alzahrani, B., Baharom, S. and Habibi, M. (2020), "Semi-numerical simulation for vibrational responses of the viscoelastic imperfect annular system with honeycomb core under residual pressure", Eng. Comput., 1-26. https://doi.org/10.1007/s00366-020-01191-9.
  12. Cao, C., Wang, J., Kwok, D., Cui, F., Zhang, Z., Zhao, D., Li, M.J. and Zou, Q. (2022), "webTWAS: A resource for disease candidate susceptibility genes identified by transcriptome-wide association study", Nucleic Acids Res., 50(D1), D1123-D1130. https://doi.org/10.1093/nar/gkab957.
  13. Chalupniak, A., Morales-Narvaez, E. and Merkoci, A. (2015), "Micro and nanomotors in diagnostics", Adv. Drug Deliv. Rev., 95 104-116. https://doi.org/10.1016/j.addr.2015.09.004.
  14. Chang, Y., Niu, B., Wang, H., Zhang, L., Ahmad, A.M. and Alassafi, M.O. (2022), "Adaptive tracking control for nonlinear system in pure-feedback form with prescribed performance and unknown hysteresis", IMA J. Math. Control Inform., 39(3), 892-911. https://doi.org/10.1093/imamci/dnac015.
  15. Cheshmeh, E., Karbon, M., Eyvazian, A., Jung, D.w., Habibi, M. and Safarpour, M. (2020), "Buckling and vibration analysis of FG-CNTRC plate subjected to thermo-mechanical load based on higher order shear deformation theory", Mech. Based Des. Struct., 1-24. https://doi.org/10.1080/15397734.2020.1744005.
  16. Choi, H., Hwang, B.W., Park, K.M., Kim, K.S. and Hahn, S.K. (2020), "Degradable nanomotors using platinum deposited complex of calcium carbonate and hyaluronate nanogels for targeted drug delivery", Particle Particle Syst. Character., 37(1), 1900418. https://doi.org/10.1002/ppsc.201900418.
  17. Dai, Z., Jiang, Z., Zhang, L. and Habibi, M. (2021a), "Frequency characteristics and sensitivity analysis of a size-dependent laminated nanoshell", Adv. Nano Res., 10(2), 175. https://doi.org/10.12989/anr.2021.10.2.175.
  18. Dai, Z., Zhang, L., Bolandi, S.Y. and Habibi, M. (2021b), "On the vibrations of the non-polynomial viscoelastic composite open-type shell under residual stresses", Compos. Struct., 113599. https://doi.org/10.1016/j.compstruct.2021.113599.
  19. De Rosa, M.A., Lippiello, M., Babilio, E. and Ceraldi, C. (2021), "Nonlocal vibration analysis of a nonuniform carbon nanotube with elastic constraints and an attached mass", Materials, 14(13). https://doi.org/10.3390/ma14133445.
  20. Deshpande, A.A., Rhodes, C.T., Shah, N.H. and Malick, A.W. (1996), "Controlled-release drug delivery systems for prolonged gastric residence: An overview", Drug Develop. Ind. Pharm., 22(6), 531-539. https://doi.org/10.3109/03639049609108355.
  21. Ebrahimi, F., Hajilak, Z.E., Habibi, M. and Safarpour, H. (2019a), "Buckling and vibration characteristics of a carbon nanotube-reinforced spinning cantilever cylindrical 3D shell conveying viscous fluid flow and carrying spring-mass systems under various temperature distributions", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(13), 4590-4605. https://doi.org/10.1177/0954406219832323.
  22. Ebrahimi, F., Mohammadi, K., Barouti, M.M. and Habibi, M. (2019b), "Wave propagation analysis of a spinning porous graphene nanoplatelet-reinforced nanoshell", Wave Random Complex Med., 1-27. https://doi.org/10.1080/17455030.2019.1694729.
  23. Ebrahimi, F. and Shafiei, N. (2016), "Application of Eringen's nonlocal elasticity theory for vibration analysis of rotating functionally graded nanobeams", Smart Struct. Syst., 17(5), 837-857. https://doi.org/10.12989/sss.2016.17.5.837.
  24. Ebrahimi, F. and Shafiei, N. (2017), "Influence of initial shear stress on the vibration behavior of single-layered graphene sheets embedded in an elastic medium based on Reddy's higher-order shear deformation plate theory", Mech. Adv. Mater. Struct., 24(9), 761-772. https://doi.org/10.1080/15376494.2016.1196781.
  25. Ebrahimi, F., Shafiei, N., Kazemi, M. and Mousavi Abdollahi, S.M. (2017), "Thermo-mechanical vibration analysis of rotating nonlocal nanoplates applying generalized differential quadrature method", Mech. Adv. Mater. Struct., 24(15), 1257-1273. https://doi.org/10.1080/15376494.2016.1227499.
  26. Ebrahimi, F., Supeni, E.E.B., Habibi, M. and Safarpour, H. (2020), "Frequency characteristics of a GPL-reinforced composite microdisk coupled with a piezoelectric layer", Eur. Phys. J. Plus, 135(2), 144. https://doi.org/10.1140/epjp/s13360-020-00217-x.
  27. Ehyaei, J., Akbarshahi, A. and Shafiei, N. (2017), "Influence of porosity and axial preload on vibration behavior of rotating FG nanobeam", Adv. Nano Res., 5(2), 141. https://doi.org/10.12989/anr.2017.5.2.141.
  28. Eringen, A.C. (1972), "Linear theory of nonlocal elasticity and dispersion of plane waves", Int. J. Eng. Sci., 10(5), 425-435. https://doi.org/10.1016/0020-7225(72)90050-X.
  29. Eringen, A.C.A. and Wegner, J.L.R. (2003), "Nonlocal continuum field theories", Appl. Mech. Rev., 56(2), B20-B22. https://doi.org/10.1115/1.1553434.
  30. Esmailpoor Hajilak, Z., Pourghader, J., Hashemabadi, D., Sharifi Bagh, F., Habibi, M. and Safarpour, H. (2019), "Multilayer GPLRC composite cylindrical nanoshell using modified strain gradient theory", Mech. Based Des. Struct., 47(5), 521-545. https://doi.org/10.1080/15397734.2019.1566743.
  31. Fakher, M., Behdad, S., Naderi, A. and Hosseini-Hashemi, S. (2020), "Thermal vibration and buckling analysis of two-phase nanobeams embedded in size dependent elastic medium", Int. J. Mech. Sci., 171, 105381. https://doi.org/10.1016/j.ijmecsci.2019.105381.
  32. Gao, W., Kagan, D., Pak, O.S., Clawson, C., Campuzano, S., Chuluun-Erdene, E., Shipton, E., Fullerton, E.E., Zhang, L., Lauga, E. and Wang, J. (2012), "Cargo-towing fuel-free magnetic nanoswimmers for targeted drug delivery", Small. 8(3), 460-467. https://doi.org/10.1002/smll.201101909.
  33. Gao, W. and Wang, J. (2014), "Synthetic micro/nanomotors in drug delivery", Nanoscale, 6(18), 10486-10494. https://doi.org/10.1039/C4NR03124E.
  34. Ghadiri, M., Hosseini, S.H.S. and Shafiei, N. (2016a), "A power series for vibration of a rotating nanobeam with considering thermal effect", Mech. Adv. Mater. Struct., 23(12), 1414-1420. https://doi.org/10.1080/15376494.2015.1091527.
  35. Ghadiri, M., Mahinzare, M., Shafiei, N. and Ghorbani, K. (2017a), "On size-dependent thermal buckling and free vibration of circular FG Microplates in thermal environments", Microsyst. Technol., 23(10), 4989-5001. https://doi.org/10.1007/s00542-017-3308-x.
  36. Ghadiri, M. and Shafiei, N. (2016a), "Nonlinear bending vibration of a rotating nanobeam based on nonlocal Eringen's theory using differential quadrature method", Microsyst. Technol., 22(12), 2853-2867. https://doi.org/10.1007/s00542-015-2662-9.
  37. Ghadiri, M. and Shafiei, N. (2016b), "Vibration analysis of a nano-turbine blade based on Eringen nonlocal elasticity applying the differential quadrature method", J. Vib. Control, 23(19), 3247-3265. https://doi.org/10.1177/1077546315627723.
  38. Ghadiri, M. and Shafiei, N. (2016c), "Vibration analysis of rotating functionally graded Timoshenko microbeam based on modified couple stress theory under different temperature distributions", Acta Astronaut., 121, 221-240. https://doi.org/10.1016/j.actaastro.2016.01.003.
  39. Ghadiri, M., Shafiei, N. and Akbarshahi, A. (2016b), "Influence of thermal and surface effects on vibration behavior of nonlocal rotating Timoshenko nanobeam", Appl. Phys. A, 122(7), 673. https://doi.org/10.1007/s00339-016-0196-3.
  40. Ghadiri, M., Shafiei, N. and Alavi, H. (2017b), "Thermo-mechanical vibration of orthotropic cantilever and propped cantilever nanoplate using generalized differential quadrature method", Mech. Adv. Mater. Struct., 24(8), 636-646. https://doi.org/10.1080/15376494.2016.1196770.
  41. Ghadiri, M., Shafiei, N. and Alavi, H. (2017c), "Vibration analysis of a rotating nanoplate using nonlocal elasticity theory", J. Solid Mech., 9(2), 319-337.
  42. Ghadiri, M., Shafiei, N. and Alireza Mousavi, S. (2016c), "Vibration analysis of a rotating functionally graded tapered microbeam based on the modified couple stress theory by DQEM", Appl. Phys. A, 122(9), 837. https://doi.org/10.1007/s00339-016-0364-5.
  43. Ghadiri, M., Shafiei, N. and Babaei, R. (2017d), "Vibration of a rotary FG plate with consideration of thermal and Coriolis effects", Steel Compos. Struct., 25(2), 197-207. https://doi.org/10.12989/SCS.2017.25.2.197.
  44. Ghadiri, M., Shafiei, N. and Safarpour, H. (2017e), "Influence of surface effects on vibration behavior of a rotary functionally graded nanobeam based on Eringen's nonlocal elasticity", Microsyst. Technol., 23(4), 1045-1065. https://doi.org/10.1007/s00542-016-2822-6.
  45. Ghadiri, M., Shafiei, N., Salekdeh, S.H., Mottaghi, P. and Mirzaie, T. (2016d), "Investigation of the dental implant geometry effect on stress distribution at dental implant-bone interface", J. Brazil. Soc. Mech. Sci. Eng., 38(2), 335-343. https://doi.org/10.1007/s40430-015-0472-8.
  46. Ghazanfari, A., Soleimani, S.S., Keshavarzzadeh, M., Habibi, M., Assempuor, A. and Hashemi, R. (2020), "Prediction of FLD for sheet metal by considering through-thickness shear stresses", Mech. Based Des. Struct., 48(6), 755-772. https://doi.org/10.1080/15397734.2019.1662310.
  47. Guo, J., Baharvand, A., Tazeddinova, D., Habibi, M., Safarpour, H., Roco-Videla, A. and Selmi, A. (2021a), "An intelligent computer method for vibration responses of the spinning multilayer symmetric nanosystem using multi-physics modeling", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-021-01433-4.
  48. Guo, Y., Mi, H. and Habibi, M. (2021b), "Electromechanical energy absorption, resonance frequency, and low-velocity impact analysis of the piezoelectric doubly curved system", Mech. Syst. Signal Pr., 157, 107723. https://doi.org/10.1016/j.ymssp.2021.107723.
  49. Habibi, M., Darabi, R., Sa, J.C.d. and Reis, A. (2021), "An innovation in finite element simulation via crystal plasticity assessment of grain morphology effect on sheet metal formability", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 235(8), 1937-1951. https://doi.org/10.1177/14644207211024686.
  50. Habibi, M., Ghazanfari, A., Assempour, A., Naghdabadi, R. and Hashemi, R. (2017), "Determination of forming limit diagram using two modified finite element models", Mech. Eng., 48(4), 141-144. https://doi.org/10.22060/MEJ.2016.664.
  51. Habibi, M., Hashemabadi, D. and Safarpour, H. (2019a), "Vibration analysis of a high-speed rotating GPLRC nanostructure coupled with a piezoelectric actuator", Eur. Phys. J. Plus, 134(6), 307. https://doi.org/10.1140/epjp/i2019-12742-7.
  52. Habibi, M., Mohammadi, A., Safarpour, H. and Ghadiri, M. (2019b), "Effect of porosity on buckling and vibrational characteristics of the imperfect GPLRC composite nanoshell", Mech. Based Des. Struct., 1-30. https://doi.org/10.1080/15397734.2019.1701490.
  53. Habibi, M., Safarpour, M. and Safarpour, H. (2020), "Vibrational characteristics of a FG-GPLRC viscoelastic thick annular plate using fourth-order Runge-Kutta and GDQ methods", Mech. Based Des. Struct., 1-22. https://doi.org/10.1080/15397734.2020.1779086.
  54. Hashemi, H.R., Alizadeh, A.a., Oyarhossein, M.A., Shavalipour, A., Makkiabadi, M. and Habibi, M. (2019), "Influence of imperfection on amplitude and resonance frequency of a reinforcement compositionally graded nanostructure", Wave Random Complex Med., 1-27. https://doi.org/10.1080/17455030.2019.1662968.
  55. He, X., Ding, J., Habibi, M., Safarpour, H. and Safarpour, M. (2021), "Non-polynomial framework for bending responses of the multi-scale hybrid laminated nanocomposite reinforced circular/annular plate", Thin Wall. Struct., 166, 108019. https://doi.org/10.1016/j.tws.2021.108019.
  56. Hou, F., Wu, S., Moradi, Z. and Shafiei, N. (2021), "The computational modeling for the static analysis of axially functionally graded micro-cylindrical imperfect beam applying the computer simulation", Eng. Comput., 1-19. https://doi.org/10.1007/s00366-021-01456-x.
  57. Hu, M., Ge, X., Chen, X., Mao, W., Qian, X. and Yuan, W.-E. (2020), "Micro/nanorobot: A promising targeted drug delivery system", Pharmaceutics, 12(7). https://doi.org/10.3390/pharmaceutics12070665.
  58. Huang, X., Hao, H., Oslub, K., Habibi, M. and Tounsi, A. (2021a), "Dynamic stability/instability simulation of the rotary size-dependent functionally graded microsystem", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-021-01399-3.
  59. Huang, X., Zhang, Y., Moradi, Z. and Shafiei, N. (2021b), "Computer simulation via a couple of homotopy perturbation methods and the generalized differential quadrature method for nonlinear vibration of functionally graded non-uniform microtube", Eng. Comput., 1-18. https://doi.org/10.1007/s00366-021-01395-7.
  60. Huang, X., Zhu, Y., Vafaei, P., Moradi, Z. and Davoudi, M. (2021c), "An iterative simulation algorithm for large oscillation of the applicable 2D-electrical system on a complex nonlinear substrate", Eng. Comput., 1-13. https://doi.org/10.1007/s00366-021-01320-y.
  61. Ismagilov, R.F., Schwartz, A., Bowden, N. and Whitesides, G.M. (2002), "Autonomous movement and self-assembly", Angewandte Chemie International Edition, 41(4), 652-654. https://doi.org/10.1002/1521-3773(20020215)41:4<652::AIDANIE652>3.0.CO,2-U.
  62. Ji, X., Cheng, Y., Tian, J., Zhang, S., Jing, Y. and Shi, M. (2021), "Structural characterization of polysaccharide from jujube (Ziziphus jujuba Mill.) fruit", Chem. Biol. Technol. Agric., 8(1), 54. https://doi.org/10.1186/s40538-021-00255-2.
  63. Ji, X., Hou, C., Gao, Y., Xue, Y., Yan, Y. and Guo, X. (2020), "Metagenomic analysis of gut microbiota modulatory effects of jujube (Ziziphus jujuba Mill.) polysaccharides in a colorectal cancer mouse model", Food Funct., 11(1), 163-173. https://doi.org/10.1039/C9FO02171J.
  64. Jiang, L., Wang, Y., Wang, X., Ning, F., Wen, S., Zhou, Y., Chen, S., Betts, A., Jerrams, S. and Zhou, F.L. (2021), "Electro-hydrodynamic printing of a dielectric elastomer actuator and its application in tunable lenses", Compos. Part A, 147, 106461. https://doi.org/10.1016/j.compositesa.2021.106461.
  65. Jiao, J., Ghoreishi, S.M., Moradi, Z. and Oslub, K. (2021), "Coupled particle swarm optimization method with genetic algorithm for the static-dynamic performance of the magneto-electro-elastic nanosystem", Eng. Comput., 1-15. https://doi.org/10.1007/s00366-021-01391-x.
  66. Keller, M. (1999), "Innovations and perspectives of metered dose inhalers in pulmonary drug delivery", Int. J. Pharm., 186(1), 81-90. https://doi.org/10.1016/S0378-5173(99)00132-5.
  67. Lai, W.F., Gui, D., Wong, M., Doring, A., Rogach, A.L., He, T. and Wong, W.T. (2021), "A self-indicating cellulose-based gel with tunable performance for bioactive agent delivery", J. Drug Deliv. Sci. Technol., 63, 102428. https://doi.org/10.1016/j.jddst.2021.102428.
  68. Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X.
  69. Lei, X., Li, Z., Zhong, Y., Li, S., Chen, J., Ke, Y., Lv, S., Huang, L., Pan, Q., Zhao, L., Yang, X., Chen, Z., Deng, Q. and Yu, X. (2022), "Gli1 promotes epithelial-mesenchymal transition and metastasis of non-small cell lung carcinoma by regulating snail transcriptional activity and stability", Acta Pharmaceutica Sinica B. 12(10), 3877-3890. https://doi.org/10.1016/j.apsb.2022.05.024.
  70. Li, J., Tang, F. and Habibi, M. (2020a), "Bi-directional thermal buckling and resonance frequency characteristics of a GNP-reinforced composite nanostructure", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-020-01110-y.
  71. Li, P., Yang, M. and Wu, Q. (2021), "Confidence interval based distributionally robust real-time economic dispatch approach considering wind power accommodation risk", IEEE T Sustain. Energy, 12(1), 58-69. https://doi.org/10.1109/TSTE.2020.2978634.
  72. Li, Y., Li, S., Guo, K., Fang, X. and Habibi, M. (2020b), "On the modeling of bending responses of graphene-reinforced higher order annular plate via two-dimensional continuum mechanics approach", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-020-01166-w.
  73. Li, Y., Wang, H., Zhao, X. and Xu, N. (2022), "Event-triggered adaptive tracking control for uncertain fractional-order nonstrict-feedback nonlinear systems via command filtering", Int. J. Robust Nonlinear Control, 32(14), 7987-8011. https://doi.org/10.1002/rnc.6255.
  74. Liu, H., Shen, S., Oslub, K., Habibi, M. and Safarpour, H. (2021a), "Amplitude motion and frequency simulation of a composite viscoelastic microsystem within modified couple stress elasticity", Eng. Comput., 1-15. https://doi.org/10.1007/s00366-021-01316-8.
  75. Liu, H., Zhao, Y., Pishbin, M., Habibi, M., Bashir, M. and Issakhov, A. (2021b), "A comprehensive mathematical simulation of the composite size-dependent rotary 3D microsystem via two-dimensional generalized differential quadrature method", Eng. Comput., 1-16. https://doi.org/10.1007/s00366-021-01419-2.
  76. Liu, Y., Wang, W., He, T., Moradi, Z. and Larco Benitez, M.A. (2021c), "On the modelling of the vibration behaviors via discrete singular convolution method for a high-order sector annular system", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-021-01454-z.
  77. Liu, Z., Su, S., Xi, D. and Habibi, M. (2020a), "Vibrational responses of a MHC viscoelastic thick annular plate in thermal environment using GDQ method", Mech. Based Des. Struct., 1-26. https://doi.org/10.1080/15397734.2020.1784201.
  78. Liu, Z., Wu, X., Yu, M. and Habibi, M. (2020b), "Large-amplitude dynamical behavior of multilayer graphene platelets reinforced nanocomposite annular plate under thermo-mechanical loadings", Mech. Based Des. Struct., 1-25. https://doi.org/10.1080/15397734.2020.1815544.
  79. Lori, E.S., Ebrahimi, F., Supeni, E.E.B., Habibi, M. and Safarpour, H. (2020), "The critical voltage of a GPL-reinforced composite microdisk covered with piezoelectric layer", Eng. Comput., 1-20. https://doi.org/10.1007/s00366-020-01004-z.
  80. Love, J.C., Gates, B.D., Wolfe, D.B., Paul, K.E. and Whitesides, G.M. (2002), "Fabrication and wetting properties of metallic half-shells with submicron diameters", Nano Lett., 2(8), 891-894. https://doi.org/10.1021/nl025633l.
  81. Lu, P., Lee, H.P., Lu, C. and Zhang, P.Q. (2006), "Dynamic properties of flexural beams using a nonlocal elasticity model", J. Appl. Phys., 99(7), 073510. https://doi.org/10.1063/1.2189213.
  82. Ma, L., Liu, X. and Moradi, Z. "On the chaotic behavior of graphene-reinforced annular systems under harmonic excitation", Eng. Comput., 1-25. https://doi.org/10.1007/s00366-020-01210-9.
  83. Mirjavadi, S.S., Afshari, B.M., Shafiei, N., Hamouda, A., Kazemi, M. and Structures, C. (2017a), "Thermal vibration of two-dimensional functionally graded (2D-FG) porous Timoshenko nanobeams", Steel Compos. Struct., 25(4), 415-426. https://doi.org/10.12989/scs.2017.25.4.415.
  84. Mirjavadi, S.S., Matin, A., Shafiei, N., Rabby, S. and Mohasel Afshari, B. (2017b), "Thermal buckling behavior of two-dimensional imperfect functionally graded microscale-tapered porous beam", J. Therm. Stress., 40(10), 1201-1214. https://doi.org/10.1080/01495739.2017.1332962.
  85. Mirjavadi, S.S., Mohasel Afshari, B., Shafiei, N., Rabby, S. and Kazemi, M. (2017c), "Effect of temperature and porosity on the vibration behavior of two-dimensional functionally graded micro-scale Timoshenko beam", J. Vib. Control, 24(18), 4211-4225. https://doi.org/10.1177/1077546317721871.
  86. Mirjavadi, S.S., Rabby, S., Shafiei, N., Afshari, B.M. and Kazemi, M. (2017d), "On size-dependent free vibration and thermal buckling of axially functionally graded nanobeams in thermal environment", Appl. Phys. A, 123(5), 315. https://doi.org/10.1007/s00339-017-0918-1.
  87. Moayedi, H., Aliakbarlou, H., Jebeli, M., Noormohammadiarani, O., Habibi, M., Safarpour, H. and Foong, L. (2020a), "Thermal buckling responses of a graphene reinforced composite micropanel structure", Int. J. Appl. Mech., 12(1), 2050010. https://doi.org/10.1142/S1758825120500106.
  88. Moayedi, H., Aliakbarlou, H., Jebeli, M., Noormohammadiarani, O., Habibi, M., Safarpour, H. and Foong, L.K. (2020b), "Thermal buckling responses of a graphene reinforced composite micropanel structure", Int. J. Appl. Mech., 12(1), 2050010. https://doi.org/10.1142/S1758825120500106.
  89. Moayedi, H., Ebrahimi, F., Habibi, M., Safarpour, H. and Foong, L.K. (2020c), "Application of nonlocal strain-stress gradient theory and GDQEM for thermo-vibration responses of a laminated composite nanoshell", Eng. Comput., 1-16. https://doi.org/10.1007/s00366-020-01002-1.
  90. Moayedi, H., Habibi, M., Safarpour, H., Safarpour, M. and Foong, L. (2019), "Buckling and frequency responses of a graphene nanoplatelet reinforced composite microdisk", Int. J. Appl. Mech., 11(10), 1950102. https://doi.org/10.1142/S1758825119501023.
  91. Mohammadgholiha, M., Shokrgozar, A., Habibi, M. and Safarpour, H. (2019), "Buckling and frequency analysis of the nonlocal strain-stress gradient shell reinforced with graphene nanoplatelets", J. Vib. Control, 25(19-20), 2627-2640. https://doi.org/10.1177/1077546319863251.
  92. Mohammadi, A., Lashini, H., Habibi, M. and Safarpour, H. (2019), "Influence of viscoelastic foundation on dynamic behaviour of the double walled cylindrical inhomogeneous micro shell using MCST and with the aid of GDQM", J. Solid Mech., 11(2), 440-453. https://doi.org/10.22034/JSM.2019.665264.
  93. Moradi, Z., Davoudi, M., Ebrahimi, F. and Ehyaei, A.F. (2021), "Intelligent wave dispersion control of an inhomogeneous micro-shell using a proportional-derivative smart controller", Wave Random Complex Med., 1-24. https://doi.org/10.1080/17455030.2021.1926572.
  94. Munaweera, I., Trinh, M., Hong, J. and Balkus, K.J. (2016), "Chemically powered nanomotor as a delivery vehicle for biologically relevant payloads", J. Nanosci. Nanotechnol., 16(9), 9063-9071. https://doi.org/10.1166/jnn.2016.12904.
  95. Murmu, T. and Pradhan, S.C. (2009), "Thermo-mechanical vibration of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory", Comput. Mater. Sci., 46(4), 854-859. https://doi.org/10.1016/j.commatsci.2009.04.019.
  96. Naderi, A., Behdad, S. and Fakher, M. (2022), "Size dependent effects of two phase viscoelastic medium on damping vibrations of smart nanobeams: An efficient implementation of GDQM", Smart Mater. Struct., 31(4), 045007. https://doi.org/10.1088/1361-665x/ac5456.
  97. Naderi, A., Fakher, M. and Hosseini-Hashemi, S. (2021), "On the local/nonlocal piezoelectric nanobeams: Vibration, buckling, and energy harvesting", Mech. Syst. Signal Pr., 151, 107432. https://doi.org/10.1016/j.ymssp.2020.107432.
  98. Najaafi, N., Jamali, M., Habibi, M., Sadeghi, S., Jung, D.w. and Nabipour, N. (2020), "Dynamic instability responses of the substructure living biological cells in the cytoplasm environment using stress-strain size-dependent theory", J. Biomol. Struct. Dyn., 1-12. https://doi.org/10.1080/07391102.2020.1751297.
  99. Narendar, S. (2012), "Differential quadrature based nonlocal flapwise bending vibration analysis of rotating nanotube with consideration of transverse shear deformation and rotary inertia", Appl. Math. Comput., 219(3), 1232-1243. https://doi.org/10.1016/j.amc.2012.07.032.
  100. Nicewarner-Pena Sheila, R., Freeman, R.G., Reiss Brian, D., He, L., Pena David, J., Walton Ian, D., Cromer, R., Keating Christine, D. and Natan Michael, J. (2001), "Submicrometer metallic barcodes", Science, 294(5540), 137-141. https://doi.org/10.1126/science.294.5540.137.
  101. Obireddy, S.R. and Lai, W.F. (2021), "Multi-component hydrogel beads incorporated with reduced graphene oxide for pH-responsive and controlled Co-delivery of multiple agents", Pharmaceutics, 13(3). https://doi.org/10.3390/pharmaceutics13030313.
  102. Oyarhossein, M.A., Alizadeh, A.a., Habibi, M., Makkiabadi, M., Daman, M., Safarpour, H. and Jung, D.W. (2020), "Dynamic response of the nonlocal strain-stress gradient in laminated polymer composites microtubes", Sci. Rep., 10(1), 1-19. https://doi.org/10.1038/s41598-020-61855-w.
  103. Safarpour, H., Ghanizadeh, S.A. and Habibi, M. (2018), "Wave propagation characteristics of a cylindrical laminated composite nanoshell in thermal environment based on the nonlocal strain gradient theory", Eur. Phys. J. Plus, 133(12), 532. https://doi.org/10.1140/epjp/i2018-12385-2.
  104. Safarpour, M., Ebrahimi, F., Habibi, M. and Safarpour, H. (2020), "On the nonlinear dynamics of a multi-scale hybrid nanocomposite disk", Eng. Comput., 1-20. https://doi.org/10.1007/s00366-020-00949-5.
  105. Shafiei, N., Ghadiri, M. and Mahinzare, M. (2019), "Flapwise bending vibration analysis of rotary tapered functionally graded nanobeam in thermal environment", Mech. Adv. Mater. Struct., 26(2), 139-155. https://doi.org/10.1080/15376494.2017.1365982.
  106. Shafiei, N., Ghadiri, M., Makvandi, H. and Hosseini, S.A. (2017a), "Vibration analysis of Nano-Rotor's Blade applying Eringen nonlocal elasticity and generalized differential quadrature method", Appl. Math. Modell., 43, 191-206. https://doi.org/10.1016/j.apm.2016.10.061.
  107. Shafiei, N., Hamisi, M. and Ghadiri, M. (2020), "Vibration analysis of rotary tapered axially functionally graded Timoshenko nanobeam in thermal environment", J. Solid Mech., 12(1), 16-32.
  108. Shafiei, N. and Kazemi, M. (2017a), "Buckling analysis on the bi-dimensional functionally graded porous tapered nano-/microscale beams", Aerosp. Sci. Technol., 66 1-11. https://doi.org/10.1016/j.ast.2017.02.019.
  109. Shafiei, N. and Kazemi, M. (2017b), "Nonlinear buckling of functionally graded nano-/micro-scaled porous beams", Compos. Struct., 178, 483-492. https://doi.org/10.1016/j.compstruct.2017.07.045.
  110. Shafiei, N., Kazemi, M. and Fatahi, L. (2017b), "Transverse vibration of rotary tapered microbeam based on modified couple stress theory and generalized differential quadrature element method", Mech. Adv. Mater. Struct., 24(3), 240-252. https://doi.org/10.1080/15376494.2015.1128025.
  111. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016a), "Comparison of modeling of the rotating tapered axially functionally graded Timoshenko and Euler-Bernoulli microbeams", Physica E, 83 74-87. https://doi.org/10.1016/j.physe.2016.04.011.
  112. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016b), "Nonlinear vibration behavior of a rotating nanobeam under thermal stress using Eringen's nonlocal elasticity and DQM", Appl. Phys. A, 122(8), 728. https://doi.org/10.1007/s00339-016-0245-y.
  113. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016c), "Nonlinear vibration of axially functionally graded tapered microbeams", Int. J. Eng. Sci., 102, 12-26. https://doi.org/10.1016/j.ijengsci.2016.02.007.
  114. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016d), "On size-dependent vibration of rotary axially functionally graded microbeam", Int. J. Eng. Sci., 101, 29-44. https://doi.org/10.1016/j.ijengsci.2015.12.008.
  115. Shafiei, N., Kazemi, M., Safi, M. and Ghadiri, M. (2016e), "Nonlinear vibration of axially functionally graded non-uniform nanobeams", Int. J. Eng. Sci., 106, 77-94. https://doi.org/10.1016/j.ijengsci.2016.05.009.
  116. Shafiei, N., Mirjavadi, S.S., Afshari, B.M., Rabby, S. and Hamouda, A.M.S. (2017c), "Nonlinear thermal buckling of axially functionally graded micro and nanobeams", Compos. Struct., 168, 428-439. https://doi.org/10.1016/j.compstruct.2017.02.048.
  117. Shafiei, N., Mirjavadi, S.S., MohaselAfshari, B., Rabby, S. and Kazemi, M. (2017d), "Vibration of two-dimensional imperfect functionally graded (2D-FG) porous nano-/micro-beams", Comput. Method Appl. Mech. Eng., 322, 615-632. https://doi.org/10.1016/j.cma.2017.05.007.
  118. Shafiei, N., Mousavi, A. and Ghadiri, M. (2016f), "On size-dependent nonlinear vibration of porous and imperfect functionally graded tapered microbeams", Int. J. Eng. Sci., 106, 42-56. https://doi.org/10.1016/j.ijengsci.2016.05.007.
  119. Shafiei, N., Mousavi, A. and Ghadiri, M. (2016g), "Vibration behavior of a rotating non-uniform FG microbeam based on the modified couple stress theory and GDQEM", Compos. Struct., 149, 157-169. https://doi.org/10.1016/j.compstruct.2016.04.024.
  120. Shafiei, N. and She, G.L. (2018), "On vibration of functionally graded nano-tubes in the thermal environment", Int. J. Eng. Sci., 133, 84-98. https://doi.org/10.1016/j.ijengsci.2018.08.004.
  121. Shao, Y., Zhao, Y., Gao, J. and Habibi, M. (2021), "Energy absorption of the strengthened viscoelastic multi-curved composite panel under friction force", Arch. Civil Mech. Eng., 21(4), 1-29. https://doi.org/10.1007/s43452-021-00279-3.
  122. Shariati, A., Habibi, M., Tounsi, A., Safarpour, H. and Safa, M. (2020a), "Application of exact continuum size-dependent theory for stability and frequency analysis of a curved cantilevered microtubule by considering viscoelastic properties", Eng. Comput., 1-20. https://doi.org/10.1007/s00366-020-01024-9.
  123. Shariati, A., Habibi, M., Tounsi, A., Safarpour, H. and Safa, M. (2021), "Application of exact continuum size-dependent theory for stability and frequency analysis of a curved cantilevered microtubule by considering viscoelastic properties", Eng. Comput., 37(4), 3629-3648. https://doi.org/10.1007/s00366-020-01024-9.
  124. Shariati, A., Mohammad-Sedighi, H., Zur, K.K., Habibi, M. and Safa, M. (2020b), "On the vibrations and stability of moving viscoelastic axially functionally graded nanobeams", Materials, 13(7), 1707. https://doi.org/10.3390/ma13071707.
  125. Shariati, A., Mohammad-Sedighi, H., Zur, K.K., Habibi, M. and Safa, M. (2020c), "Stability and dynamics of viscoelastic moving rayleigh beams with an asymmetrical distribution of material parameters", Symmetry, 12(4), 586. https://doi.org/10.3390/sym12040586.
  126. Shi, D., Chen, Y., Li, Z., Dong, S., Li, L., Hou, M., Liu, H., Zhao, S., Chen, X., Wong, C.P. and Zhao, N. (2022), "Anisotropic charge transport enabling high-throughput and high-aspect-ratio wet etching of silicon carbide", Small Methods, n/a(n/a), 2200329. https://doi.org/10.1002/smtd.202200329.
  127. Shivanian, E., Ghadiri, M. and Shafiei, N. (2017), "Influence of size effect on flapwise vibration behavior of rotary microbeam and its analysis through spectral meshless radial point interpolation", Appl. Phys. A, 123(5), 329. https://doi.org/10.1007/s00339-017-0955-9.
  128. Shojaeefard, M.H., Mahinzare, M., Safarpour, H., Saeidi Googarchin, H. and Ghadiri, M. (2018), "Free vibration of an ultra-fast-rotating-induced cylindrical nano-shell resting on a Winkler foundation under thermo-electro-magneto-elastic condition", Appl. Math. Modell., 61, 255-279. https://doi.org/10.1016/j.apm.2018.04.015.
  129. Shokrgozar, A., Safarpour, H. and Habibi, M. (2020), "Influence of system parameters on buckling and frequency analysis of a spinning cantilever cylindrical 3D shell coupled with piezoelectric actuator", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 234(2), 512-529. https://doi.org/10.1177/0954406219883312.
  130. Si, Z., Yang, M., Yu, Y. and Ding, T. (2021), "Photovoltaic power forecast based on satellite images considering effects of solar position", Appl. Energy, 302, 117514. https://doi.org/10.1016/j.apenergy.2021.117514.
  131. Simsek, M. (2010), "Vibration analysis of a single-walled carbon nanotube under action of a moving harmonic load based on nonlocal elasticity theory", Physica E, 43(1), 182-191. https://doi.org/10.1016/j.physe.2010.07.003.
  132. Simsek, M. (2011), "Nonlocal effects in the forced vibration of an elastically connected double-carbon nanotube system under a moving nanoparticle", Comput. Mater. Sci., 50(7), 2112-2123. https://doi.org/10.1016/j.commatsci.2011.02.017.
  133. Singh, D.K. and Pal, P. (2021), "Forced vibration analysis of stiffened lock gate structure", J. Sound Vib., 510, 116278. https://doi.org/10.1016/j.jsv.2021.116278.
  134. Sokolov, I.L., Cherkasov, V.R., Tregubov, A.A., Buiucli, S.R. and Nikitin, M.P. (2017), "Smart materials on the way to theranostic nanorobots: Molecular machines and nanomotors, advanced biosensors, and intelligent vehicles for drug delivery", Biochimica et Biophysica Acta - General Subjects, 1861(6), 1530-1544. https://doi.org/10.1016/j.bbagen.2017.01.027.
  135. Sundararajan, S., Lammert, P.E., Zudans, A.W., Crespi, V.H. and Sen, A. (2008), "Catalytic motors for transport of colloidal cargo", Nano Lett., 8(5), 1271-1276. https://doi.org/10.1021/nl072275j.
  136. Tang, F., Niu, B., Zong, G., Zhao, X. and Xu, N. (2022), "Periodic event-triggered adaptive tracking control design for nonlinear discrete-time systems via reinforcement learning", Neural Networks, 154, 43-55. https://doi.org/10.1016/j.neunet.2022.06.039.
  137. Vogt, A., Wischke, C., Neffe, A.T., Ma, N., Alexiev, U. and Lendlein, A. (2016), "Nanocarriers for drug delivery into and through the skin - Do existing technologies match clinical challenges?", J. Control. Release, 242, 3-15. https://doi.org/10.1016/j.jconrel.2016.07.027.
  138. Wang, J., Jiang, X., Zhao, L., Zuo, S., Chen, X., Zhang, L., Lin, Z., Zhao, X., Qin, Y., Zhou, X. and Yu, X.-Y. (2020a), "Lineage reprogramming of fibroblasts into induced cardiac progenitor cells by CRISPR/Cas9-based transcriptional activators", Acta Pharmaceutica Sinica B, 10(2), 313-326. https://doi.org/10.1016/j.apsb.2019.09.003.
  139. Wang, M., Yang, M., Fang, Z., Wang, M. and Wu, Q. (2022a), "A practical feeder planning model for urban distribution system", IEEE T Power Syst., 1-1. https://doi.org/10.1109/TPWRS.2022.3170933.
  140. Wang, P., Gao, Z., Pan, F., Moradi, Z., Mahmoudi, T. and Khadimallah, M.A. (2022b), "A couple of GDQM and iteration techniques for the linear and nonlinear buckling of bi-directional functionally graded nanotubes based on the nonlocal strain gradient theory and high-order beam theory", Eng. Anal. Bound. Elem., 143, 124-136. https://doi.org/10.1016/j.enganabound.2022.06.007.
  141. Wang, S., Liu, K., Wang, F., Peng, F. and Tu, Y. (2019), "The application of micro- and nanomotors in classified drug delivery", Chemistry - An Asian Journal, 14(14), 2336-2347. https://doi.org/10.1002/asia.201900274.
  142. Wang, Z., Yu, S., Xiao, Z. and Habibi, M. (2020b), "Frequency and buckling responses of a high-speed rotating fiber metal laminated cantilevered microdisk", Mech. Adv. Mater. Struct., 1-14. https://doi.org/10.1080/15376494.2020.1824284.
  143. Wu, J. and Habibi, M. (2021), "Dynamic simulation of the ultra-fast-rotating sandwich cantilever disk via finite element and semi-numerical methods", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-021-01396-6.
  144. Xu, W., Pan, G., Moradi, Z. and Shafiei, N. (2021), "Nonlinear forced vibration analysis of functionally graded non-uniform cylindrical microbeams applying the semi-analytical solution", Compos. Struct., 114395. https://doi.org/10.1016/j.compstruct.2021.114395.
  145. Xu, X.J., Deng, Z.C., Zhang, K. and Xu, W. (2016), "Observations of the softening phenomena in the nonlocal cantilever beams", Compos. Struct., 145, 43-57. https://doi.org/10.1016/j.compstruct.2016.02.073.
  146. Xue, X., Liu, H., Wang, S., Hu, Y., Huang, B., Li, M., Gao, J., Wang, X. and Su, J. (2022), "Neutrophil-erythrocyte hybrid membrane-coated hollow copper sulfide nanoparticles for targeted and photothermal/ anti-inflammatory therapy of osteoarthritis", Compos. Part B Eng., 237, 109855. https://doi.org/10.1016/j.compositesb.2022.109855.
  147. Yu, X., Maalla, A. and Moradi, Z. (2022), "Electroelastic high-order computational continuum strategy for critical voltage and frequency of piezoelectric NEMS via modified multi-physical couple stress theory", Mech. Syst. Signal Pr., 165 108373. https://doi.org/10.1016/j.ymssp.2021.108373.
  148. Zare, R., Najaafi, N., Habibi, M., Ebrahimi, F. and Safarpour, H. (2020), "Influence of imperfection on the smart control frequency characteristics of a cylindrical sensor-actuator GPLRC cylindrical shell using a proportional-derivative smart controller", Smart Struct. Syst., 26(4), 469-480. https://doi.org/10.12989/sss.2020.26.4.469.
  149. Zha, F., Wang, T., Luo, M. and Guan, J. (2018), "Tubular micro/nanomotors: Propulsion mechanisms, fabrication techniques and applications", Micromachines, 9(2). https://doi.org/10.3390/mi9020078.
  150. Zhang, H., Zhao, X., Zhang, L., Niu, B., Zong, G. and Xu, N. (2022a), "Observer-based adaptive fuzzy hierarchical sliding mode control of uncertain under-actuated switched nonlinear systems with input quantization", Int. J. Robust Nonlinear Control, 32(14), 8163-8185. https://doi.org/10.1002/rnc.6269.
  151. Zhang, H., Zou, Q., Ju, Y., Song, C. and Chen, D. (2022b), "Distance-based support vector machine to predict DNA N6-methyladenine modification", Curr. Bioinform., 17(5), 473-482. https://doi.org/10.2174/1574893617666220404145517.
  152. Zhang, X., Shamsodin, M., Wang, H., NoormohammadiArani, O., Khan, A.M., Habibi, M. and Al-Furjan, M. (2020), "Dynamic information of the time-dependent tobullian biomolecular structure using a high-accuracy size-dependent theory", J. Biomol. Struct. Dyn., 1-16. https://doi.org/10.1080/07391102.2020.1760939.
  153. Zhang, Y., Wang, Z., Tazeddinova, D., Ebrahimi, F., Habibi, M. and Safarpour, H. (2021), "Enhancing active vibration control performances in a smart rotary sandwich thick nanostructure conveying viscous fluid flow by a PD controller", Wave Random Complex Med., 1-24. https://doi.org/10.1080/17455030.2021.1948627.
  154. Zhao, Y., Moradi, Z., Davoudi, M. and Zhuang, J. "Bending and stress responses of the hybrid axisymmetric system via statespace method and 3D-elasticity theory", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-020-01242-1.
  155. Zhou, C., Zhao, Y., Zhang, J., Fang, Y. and Habibi, M. (2020), "Vibrational characteristics of multi-phase nanocomposite reinforced circular/annular system", Adv. Nano Res., 9(4), 295-307. https://doi.org/10.12989/anr.2020.9.4.295.
  156. Zhuo, Z., Wan, Y., Guan, D., Ni, S., Wang, L., Zhang, Z., Liu, J., Liang, C., Yu, Y., Lu, A., Zhang, G. and Zhang, B.T. (2020), "A Loop-based and AGO-incorporated virtual screening model targeting AGO-mediated miRNA-mRNA interactions for drug discovery to rescue bone phenotype in genetically modified mice", Adv. Sci., 7(13), 1903451. https://doi.org/10.1002/advs.201903451.