DOI QR코드

DOI QR Code

Optimization of FSW of Nano-silica-reinforced ABS T-Joint using a Box-Behnken Design (BBD)

  • 투고 : 2022.10.31
  • 심사 : 2022.10.31
  • 발행 : 2023.02.25

초록

This experimental study investigated friction stir welding (FSW) of the acrylonitrile-butadiene-styrene (ABS) T-joint in the presence of various nano-silica levels. This study aim to handle the drawbacks of the friction stir welding (FSW) of an ABS T-joint with various quantity of nanoparticles and assess the performance of nanoparticles in the welded joint. Moreover, the relationship between the nanoparticle quantity and FSW was analyzed using response surface methodology (RSM) Box-Behnken design. The input parameters were the tool rotation speed (400, 600, 800 rpm), the transverse speed (20, 30, 40 mm/min), and the nano-silica level (0.8, 1.6, 2.4 g). The tensile strength of the prepared specimens was determined by the universal testing machine. Silica nanoparticles were used to improve the mechanical properties (the tensile strength) of ABS and investigate the effect of various FSW parameters on the ABS T-joint. The results of Box-Behnken RSM revealed that sound joints with desired characteristics and efficiency are fabricated at tool rotation speed 755 rpm, transverse speed 20 mm/min, and nano-silica level 2.4 g. The scanning electron microscope (SEM) images revealed the crucial role of silica nanoparticles in reinforcing the ABS T-joint. The SEM images also indicated a decrease in the nanoparticle size by the tool rotation, leading to the filling and improvement of seams formed during FSW of the ABS T-joint.

키워드

참고문헌

  1. Azhiri, R.B., Mehdizad Tekiyeh, R., Zeynali, E., Ahmadnia, M. and Javidpour, F. (2018), "Measurement and evaluation of joint properties in friction stir welding of ABS sheets reinforced by nanosilica addition", Meas. J. Int. Meas. Confederat., 127, 198204. https://doi.org/10.1016/j.measurement.2018.05.005.
  2. Gao, J., Li, C., Shilpakar, U. and Shen, Y. (2015), "Improvements of mechanical properties in dissimilar joints of HDPE and ABS via carbon nanotubes during friction stir welding process", Mater. Des., 86, 289-296. https://doi.org/10.1016/j.matdes.2015.07.095.
  3. Kiss, Z. and Czigany, T. (2007), "Applicability of friction stir welding in polymeric materials", Periodica Polytechnica Mech. Eng., 51(1), 15-18. https://doi.org/10.3311/pp.me.2007-1.02.
  4. Kiss, Z. and Czigany, T. (2012), "Microscopic analysis of the morphology of seams in friction stir welded polypropylene", Exp. Polym. Lett., 6(1), 54-62. https://doi.org/10.3144/expresspolymlett.2012.6.
  5. Makela, M. (2017), "Experimental design and response surface methodology in energy applications: A tutorial review", Energy Convers. Manage., 151, 630-640. https://doi.org/10.1016/j.enconman.2017.09.021.
  6. Peng, P., Wang, K., Wang, W., Huang, L., Qiao, K. and Che, Q. (2018), "High-performance aluminium foam sandwich prepared through friction stir welding", Mater. Lett., 236, 295-298. https://doi.org/10.1016/j.matlet.2018.10.125.
  7. Rahimipetroudi, I., Rashid, K., Yang, J. B. and Dong, S.K. (2020), "Use of response surface methodology to optimize NOx emissions and efficiency of W-type regenerative radiant tube burner under plasma-assisted combustion", J. Clean. Prod., 244, 118626. https://doi.org/10.1016/j.jclepro.2019.118626.
  8. Myers, R.H., Montgomery, D.C. and Anderson-Cook, C.M. (2016), Response Surface Methodology: Process and Product Optimization Using Designed Experiments, John Wiley & Sons.
  9. Rezgui, M.A., Ayadi, M., Cherouat, A., Hamrouni, K., Zghal, A. and Bejaoui, S. (2010), "Application of Taguchi approach to optimize friction stir welding parameters of polyethylene", EPJ Web Conf., 6, 1-8. https://doi.org/10.1051/epjconf/20100607003.
  10. Sadeghian, N. and Besharati Givi, M.K. (2015), "Experimental optimization of the mechanical properties of friction stir welded Acrylonitrile Butadiene Styrene sheets", Mater. Des., 67, 145-153. https://doi.org/10.1016/j.matdes.2014.11.032.
  11. Saeedy, S., Givi, M.B. and Sadeghian, N. (2010), "Design and evaluation of feasibility study of friction stir welding of thermoplastic polypropylene sheets", Proceeding of the ICME Conference on Manufacturing Engineering, Babol, Iran, 1-5.
  12. Sahu, S.K., Mishra, D., Mahto, R.P., Sharma, V.M., Pal, S.K., Pal, K., Banerjee, S. and Dash, P. (2018), "Friction stir welding of polypropylene sheet", Eng. Sci. Technol., 21(2), 245-254. https://doi.org/10.1016/j.jestch.2018.03.002.
  13. Sahu, S.K., Pal, K. and Das, S. (2020), "Parametric study on joint quality in friction stir welding of polycarbonate", Mater. Today Proceedings, 39, 1275-1280. https://doi.org/10.1016/j.matpr.2020.04.218.
  14. Squeo, E.A., Bruno, G., Guglielmotti, A. and Quadrini, F. (2009), "Friction stir welding of polyethylene sheets", Friction Stir Weld. Polyethylene Sheets, 241-246.
  15. Zhai, M., Wu, C.S. and Su, H. (2020), "Influence of tool tilt angle on heat transfer and material flow in friction stir welding", J. Manuf. Pr., 59, 98-112. https://doi.org/10.1016/j.jmapro.2020.09.038.