DOI QR코드

DOI QR Code

Development of deep learning structure for complex microbial incubator applying deep learning prediction result information

딥러닝 예측 결과 정보를 적용하는 복합 미생물 배양기를 위한 딥러닝 구조 개발

  • Received : 2023.01.27
  • Accepted : 2023.02.26
  • Published : 2023.03.31

Abstract

In this paper, we develop a deep learning structure for a complex microbial incubator that applies deep learning prediction result information. The proposed complex microbial incubator consists of pre-processing of complex microbial data, conversion of complex microbial data structure, design of deep learning network, learning of the designed deep learning network, and GUI development applied to the prototype. In the complex microbial data preprocessing, one-hot encoding is performed on the amount of molasses, nutrients, plant extract, salt, etc. required for microbial culture, and the maximum-minimum normalization method for the pH concentration measured as a result of the culture and the number of microbial cells to preprocess the data. In the complex microbial data structure conversion, the preprocessed data is converted into a graph structure by connecting the water temperature and the number of microbial cells, and then expressed as an adjacency matrix and attribute information to be used as input data for a deep learning network. In deep learning network design, complex microbial data is learned by designing a graph convolutional network specialized for graph structures. The designed deep learning network uses a cosine loss function to proceed with learning in the direction of minimizing the error that occurs during learning. GUI development applied to the prototype shows the target pH concentration (3.8 or less) and the number of cells (108 or more) of complex microorganisms in an order suitable for culturing according to the water temperature selected by the user. In order to evaluate the performance of the proposed microbial incubator, the results of experiments conducted by authorized testing institutes showed that the average pH was 3.7 and the number of cells of complex microorganisms was 1.7 × 108. Therefore, the effectiveness of the deep learning structure for the complex microbial incubator applying the deep learning prediction result information proposed in this paper was proven.

본 논문에서는 딥러닝 예측 결과 정보를 적용하는 복합 미생물 배양기를 위한 딥러닝 구조를 개발한다. 제안하는 복합 미생물 배양기는 수집한 복합 미생물 데이터에 대해 복합 미생물 데이터 전처리, 복합 미생물 데이터 구조 변환, 딥러닝 네트워크 설계, 설계한 딥러닝 네트워크 학습, 시제품에 적용되는 GUI 개발 등으로 구성된다. 복합 미생물 데이터 전처리에서는 미생물 배양에 필요한 당밀, 영양제, 식물엑기스, 소금 등의 양에 대해 원-핫 인코딩을 실시하며, 배양된 결과로 측정된 pH 농도와 미생물의 셀 수에 대해 최대-최소 정규화 방법을 사용하여 데이터를 전처리한다. 복합 미생물 데이터 구조 변환에서는 전처리된 데이터를 물 온도와 미생물의 셀 수를 연결하여 그래프 구조로 변환 후, 인접 행렬과 속성 정보로 나타내어 딥러닝 네트워크의 입력 데이터로 사용한다. 딥러닝 네트워크 설계에서는 그래프 구조에 특화된 그래프 합성곱 네트워크를 설계하여 복합 미생물 데이터를 학습시킨다. 설계한 딥러닝 네트워크는 Cosine 손실함수를 사용하여 학습 시에 발생하는 오차를 최소화하는 방향으로 학습을 진행한다. 시제품에 적용되는 GUI 개발은 사용자가 선택하는 물 온도에 따라 목표하는 pH 농도(3.8 이하) 복합 미생물의 셀 수(108 이상)를 배양시키기 적합한 순으로 나타낸다. 제안된 미생물 배양기의 성능을 평가하기 위하여 공인시험기관에서 실험한 결과는, pH 농도의 경우 평균 3.7로, 복합 미생물의 셀 수는 1.7 × 108으로 측정되었다. 따라서, 본 논문에서 제안한 딥러닝 예측 결과 정보를 적용하는 복합 미생물 배양기를 위한 딥러닝 구조의 효용성이 입증되었다.

Keywords

Acknowledgement

This research was funded by Technology Development Program (S3013451), Ministry of SMEs and Industry-university cooperation base platform (R&D), Republic of Korea. This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the ICAN (ICT Challenge and Advanced Network of HRD) program (IITP-2023-RS-2022-00156212) supervised by the IITP (Institute of Information & Communications Technology Planning & Evaluation) This results was supported by "Regional Innovation Strategy (RIS)" through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(MOE)(2021RIS-004)

References

  1. Kim, C. M., et al, "The effect of feed additives that enhance the activity of intestinal microorganisms on the reduction of ammonia generated from pig manure slurry," Proceedings of the Korean Environmental Sciences Society Conference. The Korean Environmental Sciences Society, 2020. 
  2. Rodriguez, Pau, et al, "Beyond one-hot encoding: Lower dimensional target embedding," Image and Vision Computing 75, pp.21-31, 2018. DOI: 10.48550/arXiv.1806.10805 
  3. Kipf, Thomas N., and Max Welling, "Semi-supervised classification with graph convolutional networks," arXiv preprint, 2016. DOI: 10.48550/arXiv.1609.02907 
  4. Ioffe, Sergey, and Christian Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift," International conference on machine learning. PMLR, 2015. DOI: 10.48550/arXiv.1502.03167 
  5. Barz, Bjorn, and Joachim Denzler, "Deep learning on small datasets without pre-training using cosine loss," Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. 2020. DOI: 10.48550/arXiv.1901.09054