DOI QR코드

DOI QR Code

폴리실라잔 고체 전해질 층과 은 활성 전극의 공정이 멤리스터의 전기적 특성에 미치는 영향

Effect of the Processes of Polysilazane Solid Electrolyte Layer and Silver Active Electrode on the Electrical Characteristics of Memristor

  • Hui-Su Yang (Dept. of Creative Convergence Engineering, Hanbat National University) ;
  • Gyeong-seok Oh (Dept. of Creative Convergence Engineering, Hanbat National University) ;
  • Dong-Soo Kim (Dept. of Creative Convergence Engineering, Hanbat National University) ;
  • Jin-Hyuk Kwon (Research Institute of Printed Electronics & 3D Printing, Industry University Cooperation Foundation, Hanbat National University) ;
  • Min-Hoi Kim (Dept. of Creative Convergence Engineering, Hanbat National University)
  • 투고 : 2023.01.05
  • 심사 : 2023.02.13
  • 발행 : 2023.03.31

초록

폴리실라잔 고체 전해질 층과 은(Ag) 활성 전극의 공정이 멤리스터의 전기적 특성에 미치는 영향을 살펴보았다. 더 높은 온도에서 어닐링된 고체 전해질을 갖는 멤리스터가 더 낮은 온도에서 어닐링된 고체 전해질을 갖는 소자보다 더 높은 set voltage 및 더 나은 메모리 유지 특성을 보였다. 어닐링 온도 증가에 따른 set voltage의 증가 및 메모리 유지 특성의 향상은 각각 고체 전해질 층 내부의 빈 공간의 감소 및 균일도 증가 때문인 것으로 사료된다. 고체 전해질 층을 비교적 높은 온도에서 어닐링 할지라도, 폴리실라잔 용액의 농도가 지나치게 높은 경우에는 멤리스터의 저저항상태가 유지되지 못했다. 마지막으로, 용액공정으로 형성한 Ag 활성 전극을 갖는 멤리스터는 진공공정으로 형성한 Ag 활성 전극을 갖는 소자와 달리 WORM 특성을 갖는 것으로 나타났다. 이러한 WROM 특성은 용액공정 Ag 활성 전극에 존재하는 형태적 결함 때문인 것으로 사료된다.

Effect of the processes of polysilazane solid electrolyte layer and silver (Ag) active electrode on the electrical characteristics of memristor was investigated. The memristor with the solid electrolyte annealed at higher temperature exhibited the higher set voltage and better memory retention characteristics than that annealed at lower temperature. The increase in the set voltage and the improvement of the memory retention characteristic at high annealing temperature were attributed to a reduction in the void density and an increase in the void uniformity inside the solid electrolyte, respectively. In the case where the polysilazane solution's concentration is high, the memristor exhibited rapid degradation of low resistive state even annealed at high temperature. Lastly, it was shown that the memristor with the solution-processed Ag active electrode showed WORM property unlike that with the vacuum-processed Ag active electrode. The WORM property was possibly due to morphological defects present in the solution-processed Ag active electrode.

키워드

참고문헌

  1. Shen, Zongjie et al. "Advances of RRAM devices: Resistive switching mechanisms, materials and bionic synaptic application," J. Nanomater., vol.10. no.8, p.1437, 2020. DOI: 10.3390/nano10081437
  2. Indiveri, Giacomo et al. "Integration of nanoscale memristor synapses in neuromorphic computing architectures," Nanotechnology, vol.24, no.38, p.384010, 2013. DOI: 10.1088/0957-4484/24/38/384010
  3. Sun, Pengxiao et al. "Thermal crosstalk in 3-dimensional RRAM crossbar array," Sci. Rep., vol.5, no.1, pp.1-9, 2015. https://doi.org/10.1038/srep13504
  4. Kim, Min-Hwi et al. "Fluoropolymer-based organic memristor with multifunctionality for flexible neural network system," npj Flexible Electronics, vol.5, no.1, pp.1-8, 2021. DOI: 10.1038/s41528-021-00132-w
  5. Li, Pengfei et al. "Room-temperature, solution-processed SiOx via photochemistry approach for highly flexible resistive switching memory," ACS Appl. Mater. Interfaces, vol.12, no.50, pp.56186-56194, 2020. DOI: 10.1021/acsami.0c16556
  6. Li, Pengfei et al. "Resistance Switching Behavior of a Perhydropolysilazane-Derived SiOx-Based Memristor," J. Phys. Chem. Lett., vol.12, no.44, 10728-10734, 2021. DOI: 10.1021/acs.jpclett.1c03031
  7. Tu, Huynh Thi Cam et al. "Investigation of Polysilazane-Based SiO2 Gate Insulator for Oxide Semiconductor Thin-Film Transistors," IEEE Trans Electron Devices IEEE T ELECTRON DEV, vol.60, no.3, pp.1149-1153, 2013 DOI: 10.1109/TED.2013.2241440
  8. Choi, Young-Man et al. "Effect of PDMS blanket deformation on printability in reverse-offset printing," Trans. Korean Soc. Mech. Eng. B, vol.8, no.8, pp.709-714, 2014. DOI: 10.3795/KSME-B.2014.38.8.709
  9. Liu, Shujie et al. "Structure Inheritance in Nanoparticle Ink Direct-Writing Processes and Crack-Free Nano-Copper Interconnects Printed by a Single-Run Approach," Materials, vol.12, no.9, pp.1559, 2019. DOI:10.3390/ma12091559