DOI QR코드

DOI QR Code

Pathological Mechanism of Taeyang Blood Retention Pattern Based on Cases of Thrombosis in Patients with COVID-19 Infection : A Literature Review

코로나19 감염증 환자의 혈전 사례를 바탕으로 본 태양병 축혈증의 병리기전에 관한 문헌고찰

  • Miso Park (Clinical Trial Center, Daejeon Korean Medicine Hospital of Daejeon University) ;
  • Jungeun Choi (Clinical Trial Center, Daejeon Korean Medicine Hospital of Daejeon University) ;
  • Junghyo Cho (Department of Hepatology and Hematology of Korean Medicine, College of Korean Medicine, Daejeon University) ;
  • Horyong Yoo (Department of Cardiology and Neurology of Korean Medicine, College of Korean Medicine, Daejeon University) ;
  • Ji-Yeon Lee (Department of Obstetrics and Gynecology of Korean Medicine, College of Korean Medicine, Daejeon University)
  • 박미소 (대전대학교 대전한방병원 임상시험센터) ;
  • 최정은 (대전대학교 대전한방병원 임상시험센터) ;
  • 조정효 (대전대학교 한의학과 간계내과학교실) ;
  • 류호룡 (대전대학교 한의학과 심계내과학교실) ;
  • 이지연 (대전대학교 한의학과 부인과학교실)
  • Received : 2023.09.11
  • Accepted : 2023.11.06
  • Published : 2023.12.25

Abstract

COVID-19 infection heightens the risk of thromboembolism. To see the similarities between the COVID-19 infection and Taeyang blood retention pattern, we conducted a PubMed search using specific terms related to blood circulation issues in the context of COVID-19, summarizing findings from 13 cases and 4 observational studies involving actual patients. Patients with COVID-19 are at risk of blood coagulation due to factors such as viral-induced cytokine storms, vascular endothelial dysfunction, reduced mobility in bedridden or isolated individuals, and resulting constipation. Additionally, cytokine storms and severe inflammation can lead to delirium in COVID-19 patients. The Taeyang blood retention pattern manifests as symptoms arising from delirium and an increased blood coagulation tendency in patients with a robust immune response. According to the Sanghan theory, certain herbal treatments can alleviate symptoms in patients with a tight lower abdomen who do not experience urinary issues. Studies show that components like Persicae Semen and Rhei Redix et Rhizoma in these prescriptions enhance blood circulation and reduce hypercoagulability. Additionally, these treatments aim to promote blood flow by relieving abdominal pressure through facilitating bowel movements. The excessive inflammation and heightened blood coagulation tendency in COVID-19 resemble the Taeyang blood retention pattern, although they are caused by different pathogens. Reinterpreting classical oriental medicine's principles in a modern context may enhance our understanding of traditional East Asian Medicine and foster future developments.

Keywords

Acknowledgement

이 논문은 2023학년도 대전대학교 교내학술연구비 지원에 의해 연구되었음.

References

  1. Zhang JJ, Dong X, Cao YY, Yuan YD, Yang YB, Yan YQ, Akdis CA, Gao YD. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy. 2020 Jul;75(7):1730-41. https://doi.org/10.1111/all.14238
  2. Nalbandian A, Sehgal K, Gupta A, Madhavan MV, McGroder C, Stevens JS, Cook JR, Nordvig AS, Shalev D, Sehrawat TS, Ahluwalia N. Post-acute COVID-19 syndrome. Nature medicine. 2021 Apr;27(4):601-15. https://doi.org/10.1038/s41591-021-01283-z
  3. Akhmerov A, Marban E. COVID-19 and the heart. Circulation research. 2020 May 8;126(10):1443-55. https://doi.org/10.1161/CIRCRESAHA.120.317055
  4. Helms J, Tacquard C, Severac F, Leonard-Lorant I, Ohana M, Delabranche X, Merdji H, Clere-Jehl R, Schenck M, Fagot Gandet F, Fafi-Kremer S. High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive care medicine. 2020 Jun;46(6):1089-98. https://doi.org/10.1007/s00134-020-06062-x
  5. Mehta JL, Calcaterra G, Bassareo PP. COVID-19, thromboembolic risk, and Virchow's triad: lesson from the past. Clinical cardiology. 2020 Dec;43(12):1362-7. https://doi.org/10.1002/clc.23460
  6. Jang HS, Yang KH, Kim SJ. A theoretical approach to the nursing of tae-yang symptom. Journal of Korean Academy of Fundamentals of Nursing. 1995 Jul 1;2(1):45.
  7. MEDICLASSICS [internet]. Daejeon: Korea Institute of Oriental Medicine. [2015]-. [cited 2023 Aug 25]. Available from: https://www.mediclassics.kr/
  8. Mun JJ, Ahn KS, Kim SH, Park WS, Song MD, Park JH, Kim DH, Kim SW, Choi DY, Shin YI, Chi GY, Shin SW, Ha KT, Lee SG, Kim JB, Lee GG, Kim YM. Precise Interpretation of Sang Han Lon. Yongin: HaneuiMunhwasa, 2014:236-77, 471-3.
  9. Chi GY. A study on pathologic mechanism of psychologic symptoms in taiyang xuxuezheng. Korean Journal of Oriental Medical Pathology. 2000;14(2):1-7.
  10. Klok FA, Kruip MJ, Van der Meer NJ, Arbous MS, Gommers DA, Kant KM, Kaptein FH, van Paassen J, Stals MA, Huisman MV, Endeman H. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thrombosis Reserch. 2020;191:145-7. https://doi.org/10.1016/j.thromres.2020.04.013
  11. Mehta JL, Calcaterra G, Bassareo PP. COVID-19, thromboembolic risk, and Virchow's triad: lesson from the past. Clinical Cardiology. 2020;43(12):1362-7. https://doi.org/10.1002/clc.23460
  12. Ni W, Yang X, Yang D, Bao J, Li R, Xiao Y, Hou C, Wang H, Liu J, Yang D, Xu Y. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Critical Care. 2020;24(1):422.
  13. Insausti-Garcia A, Reche-Sainz JA, Ruiz-Arranz C, Lopez Vazquez A, Ferro-Osuna M. Papillophlebitis in a COVID-19 patient: inflammation and hypercoagulable state. European Journal of Ophthalmology. 2022;32(1):NP168-72. https://doi.org/10.1177/1120672120947591
  14. Hu B, Huang S, Yin L. The cytokine storm and COVID-19. Journal of Medical Virology. 2021;93(1):250-6. https://doi.org/10.1002/jmv.26232
  15. Schonrich G, Raftery MJ, Samstag Y. Devilishly radical NETwork in COVID-19: Oxidative stress, neutrophil extracellular traps (NETs), and T cell suppression. Advances in Biological Regulation. 2020;77:100741.
  16. Karolina J, Jablonska E, Garley M. Significance of NETs formation in COVID-19. Cells. 2021;10(1):151.
  17. Remes-Troche1 JM, Coss-Adame E, Amieva-Balmori M, Velasco JAVR, Gomez-Castanos PC, Flores-Rendon R, Gomez-Escudero O, Rodriguez-Leal MC, Duran-Rosas C, Pinto-Galvez SM, Priego-Parra BA, Triana-Romero A. Incidence of 'new-onset'constipation and associated factors during lockdown due to the COVID-19 pandemic. BMJ Open Gastroenterology. 2021;8(1):e000729.
  18. Sundboll J, Szepligeti SK, Adelborg K, Szentkuti P, Gregersen H, Sorensen HT. Constipation and risk of cardiovascular diseases: a Danish population-based matched cohort study. BMJ Open. 2020;10(9):e037080.
  19. Kirgizov IV, Sukhorukov AM, Dudarev VA, Sipkin DN. The peculiar features of changing the hemostasis in children with chronic constipation. Clinical and Applied Thrombosis/Hemostasis, 2001;7(1):1-4. https://doi.org/10.1177/107602960100700101
  20. Debnath M, Berk M, Maes M. Changing dynamics of psychoneuroimmunology during the COVID-19 pandemic. Brain, Behavior, & Immunity - Health. 2020;5:100096.
  21. Otani K, Fukushima H, Matsuishi K. COVID-19 delirium and encephalopathy: Pathophysiology assumed in the first 3 years of the ongoing pandemic. Brain Disorders, 2023;10:100074.
  22. Helms J, Kremer S, Merdji H, Schenck M, Severac F, Clere-Jehl R, Studer A, Radosavljevic M, Kummerlen C, Monnier A, Boulay C, Fafi-Kremer S, Castelain V, Ohana M, Anheim M, Schneider F, Meziani F. Delirium and encephalopathy in severe COVID-19: a cohort analysis of ICU patients. Critical Care. 2020;24(1):1-11. https://doi.org/10.1186/s13054-019-2683-3
  23. Pun BT, Badenes R, Calle GHL, Orun OM, Chen W, Raman R et al. Prevalence and risk factors for delirium in critically ill patients with COVID-19 (COVID-D): a multicentre cohort study. The Lancet Respiratory Medicine. 2021;9(3):239-50. https://doi.org/10.1016/S2213-2600(20)30552-X
  24. Oh JH, Sung JY, Seo HJ, Lee YR, Sung JY, Kong GS, Kang MH, Lee HC, Eom GH, Song WS. The effect of Korean medicine treatment on cerebral infarction with hemiplegia: a case report. The Journal of Internal Korean Medicine. 2019;40(5):990-8.
  25. Kim JB, Choi SH, An KS. Study of the effects of Taorenchengqitang and its components on blood stasis model. Korean J Oriental Physiol Pathol. 1997;11(1):65-76.
  26. Jeon WK, Kim JH, Lee A, Kim HK. Inhibition of whole blood platelet aggregation from traditional medicines. Korean Journal of Oriental Medicine. 2003;9(2):55-67.
  27. Kennedy R, Schneier A, Javed M, Truong H. Recurrent upper extremity arterial thrombosis preceding a diagnosis of COVID-19. Annals of Vascular Surgery-Brief Reports and Innovations, 2023;3(1):100148.
  28. Huang H, Lin C, Chen Y, Wu X, Lin M, Chen S, Li K. Renal artery thrombosis in SARS-CoV-2 infection: a case report. BMC Nephrology. 2022;23(1):175.
  29. Beard RW, Pearce S, Highman JH, Reginald PW. Diagnosis of pelvic varicosities in women with chronic pelvic pain. The Lancet. 1984;324(8409):946-9. https://doi.org/10.1016/S0140-6736(84)91165-6
  30. Olson MC, Lubner MG, Menias CO, Mellnick VM, Mankowski Gettle L, Kim DH et al. Venous thrombosis and hypercoagulability in the abdomen and pelvis: causes and imaging findings. RadioGraphics. 2020;40(3):190097.
  31. Etkin Y, Conway AM, Silpe J, Qato K, Carroccio A, Manvar-Singh P, Giangola G, Deitch JS, Davila-Santini L, Schor JA, Singh K. Acute arterial thromboembolism in patients with COVID-19 in the New York City area. Annals of Vascular Surgery, 2021;70:290-4. https://doi.org/10.1016/j.avsg.2020.08.085
  32. Oguzkurt L, Ozkan U, Ulusan S, Koc Z, Tercan F. Compression of the left common iliac vein in asymptomatic subjects and patients with left iliofemoral deep vein thrombosis. Journal of Vascular and Interventional Radiology. 2008;19(3):366-370. https://doi.org/10.1016/j.jvir.2007.09.007
  33. Fadul A, Subahi EA, Elamin N, Ali EA, Mohammed W, Sayed S, Rozi W, Akasha A, Elawad MF, Abdalla E, Elamin NH. Isolated Great Saphenous Vein Thrombosis in a Patient With COVID-19 Infection: Case Report and Review of the Literature. Cureus, 2022;14(12):e32196.
  34. Hesam-Shariati N, Fatehi P, Fathi F, Abouzaripour M, Hesam Shariati MB. A case report of greater saphenous vein thrombosis in a patient with coronavirus (COVID-19) infection. Tropical Diseases, Travel Medicine and Vaccines, 2021;7:1-5. https://doi.org/10.1186/s40794-020-00128-w
  35. Fatimazahra M, Harras ME, Bensahi I, Kassimi M, Oualim S, Elouarradi A, Abdeladim S, Sabry M. Ovarian vein thrombosis after coronavirus disease (COVID-19) mimicking acute abdomen: two case reports. Journal of Thrombosis and Thrombolysis. 2021;52:493-6. https://doi.org/10.1007/s11239-021-02433-3
  36. Mohammadi S, Abouzaripour M, Hesam Shariati N, Hesam Shariati MB. Ovarian vein thrombosis after coronavirus disease (COVID-19) infection in a pregnant woman: case report. Journal of Thrombosis and Thrombolysis, 2020;50:604-7. https://doi.org/10.1007/s11239-020-02177-6
  37. Alfareh KA, Zafar A. COVID-19 in a Three-Year-Old Girl With Total Anomalous Pulmonary Venous Return: A Case Report. Cureus. 2020;12(11):e11768.
  38. Zhou B, She J, Wang Y, Ma X. Venous thrombosis and arteriosclerosis obliterans of lower extremities in a very severe patient with 2019 novel coronavirus disease: a case report. Journal of Thrombosis and Thrombolysis. 2020;50:229-32. https://doi.org/10.1007/s11239-020-02084-w
  39. Siddiqui NA, Luvsannyam E, Jain MS, Abbas M, Jayaraman A, Zhuleku R, Ullah N, Corona A, Hussain MT. Acute Limb Ischemia complicated by Heparin-Induced Thrombocytopenia in an asymptomatic COVID-19 patient. Cureus, 2021;13(7):e16162.
  40. Li Z, Lin Y, Zhang S, Zhou L, Yan G, Wang Y et al. Emodin regulates neutrophil phenotypes to prevent hypercoagulation and lung carcinogenesis. Journal of Translational Medicine, 2019;17:1-15.
  41. Yan YG. Based on response surface analysis study of Persicae Semen-Rhei Radix et Rhizoma interaction effects of different compatibility of promoting blood circulation to remove blood stasis. Chinese Traditional and Herbal Drugs, 2017;24:3560-67.
  42. Zhang C, Zhong C, Shi Z, Gao Z. Pharmacological mechanism of Taohe Chengqi Decoction in the treatment of varicocele based on the network pharmacology. Hebei Journal of Traditional Chinese Medicine. 2023;45(4):668-74
  43. Appelberg S, Gupta S, Svensson Akusjarvi S, Ambikan AT, Mikaeloff F, Saccon E, Vegvari A, Benfeitas R, Sperk M, Stahlberg M, Krishnan S. Dysregulation in Akt/mTOR/HIF-1 signaling identified by proteo-transcriptomics of SARS-CoV-2 infected cells. Emerging Microbes & Infections. 2020;9(1):1748-60. https://doi.org/10.1080/22221751.2020.1799723
  44. Kokkotis G, Kitsou K, Xynogalas I, Spoulou V, Magiorkinis G, Trontzas I, Trontzas P, Poulakou G, Syrigos K, Bamias G. Systematic review with meta-analysis: COVID-19 outcomes in patients receiving anti-TNF treatments. Alimentary Pharmacology & Therapeutics. 2022;55(2):154-67. https://doi.org/10.1111/apt.16717
  45. Yildiz Gulhan P, Eroz R, Ataoglu O, Ince N, Davran F, Ozturk CE, Gamsizkan Z, Balbay OA. The evaluation of both the expression and serum protein levels of Caspase-3 gene in patients with different degrees of SARS-CoV2 infection. Journal of Medical Virology. 2022;94(3):897-905. https://doi.org/10.1002/jmv.27362
  46. Vasconcelos TDMF, Nobrega PR, Ferreira GDM, de Souza MLP, Vanderlei AS, de Castro JD, Braga-Neto P, Sobreira-Neto MA. Normal pressure hydrocephalus associated with COVID-19 infection: a case report. BMC Infectious Diseases, 2022;22(1):216.
  47. Zuo T, Wu X, Wen W, Lan P. Gut microbiome alterations in COVID-19. Genomics, Proteomics & Bioinformatics, 2021;19(5):679-88. https://doi.org/10.1016/j.gpb.2021.09.004
  48. Yamamoto S, Saito M, Tamura A, Prawisuda D, Mizutani T, Yotsuyanagi H. The human microbiome and COVID-19: A systematic review. PloS One. 2021;16(6):e0253293.
  49. Chen Y, Li X, Yu C, Wang E, Luo C, Jin Y et al. (2023). Gut microbiome alterations in patients with COVID-19-related coagulopathy. Annals of Hematology. 2023;102:1589-98. https://doi.org/10.1007/s00277-023-05186-6