DOI QR코드

DOI QR Code

공간연관성 지표를 이용한 낙동강 유역의 가뭄 핫스팟 지역 분석

Analysis of Drought Hotspot Areas Using Local Indicators of Spatial Association in the Nakdong River Basin

  • 손호준 (한양대학교 대학원 스마트시티공학과) ;
  • 변성호 (한양대학교 대학원 건설환경시스템공학과) ;
  • 박경운 (한양대학교 대학원 건설환경시스템공학과) ;
  • 김지은 (한양대학교(ERICA) 공학기술연구소) ;
  • 김태웅 (한양대학교(ERICA) 건설환경공학과)
  • 투고 : 2022.09.03
  • 심사 : 2022.11.26
  • 발행 : 2023.04.01

초록

기후변화로 인해 가뭄의 위험도가 증가함에 따라, 전 세계적으로 가뭄의 피해 최소화를 위한 가뭄 대응 연구가 진행 중이다. 특히, 최근에는 가뭄의 지역적 패턴을 복합적으로 분석하기 위한 연구가 활발히 진행되고 있지만, 여전히 대하천 유역에서 가뭄 위험지역을 정량적으로 파악하는 연구는 부족한 실정이다. 본 연구에서는 표준강수지수(SPI)와 수정표준강수지수(M_SPI)를 산정하고, RCP4.5 및 RCP8.5 기후변화 시나리오에 대한 공간자기상관분석을 수행하여 가뭄 핫스팟 지역을 분석했다. SPI는 연구 지역 내의 분석단위별로 매개변수를 추정하여 지수를 산정하지만, M_SPI는 연구 지역 전체에 대한 매개변수를 추정하여 지수를 산정하기 때문에, 대상 지역 내의 전체적인 관점에서 기상학적 가뭄 판단에 더 합리적이다. 연구 결과, M_SPI를 사용했을 경우, 장기가뭄이 단기가뭄보다 명확히 큰 가뭄 핫스팟 지역을 나타냈다. 또한 가뭄 핫스팟 지역은 시간이 지남에 따라 낙동강 유역의 중심에서 섬진강 유역의 방향으로 이동하는데, RCP 4.5 시나리오는 단기/장기 가뭄의 이동패턴이, RCP 8.5 시나리오에서는 장기가뭄의 이동패턴이 뚜렷하였다.

As drought risk increases due to climate change, various research works are underway around the world to respond to drought so as to minimize drought damage. In particular, in recent years, many studies are focused on analyzing regional patterns of drought in a comprehensive manner, however there is still insufficient to quantitatively identify drought-risk areas in a large river basin considering climate change in Korea. In this study, we calculated the Standardized Precipitation Index (SPI) and the Modified Standardized Precipitation Index (M_SPI) as representative meteorological drought index, and performed spatial autocorrelation analysis to identify the drought hotspot region under climate change scenarios of Representative Concentration Pathway (RCP) 4.5 and RCP 8.5. The SPI was calculated by estimating parameters for each observation station within the study area, whereas the M_SPI was calculated by estimating parameters for the entire study area. It is more reasonable to use the M_SPI for assessing meteorological drought from an overall perspective within the study area. When the M_SPI was used, long-term droughts showed drought hotspot areas clearly larger than short-term droughts. In addition, the drought hotspot area moved from the center of the Nakdong River basin to the Seomjin River basin over time. Especially, the moving patterns of the short-term/long-term drought were apparent under the RCP 4.5, whereas the moving patterns of the long-term drought were distinct under the RCP 8.5 scenarios.

키워드

과제정보

이 논문은 행정안전부 재난안전 공동연구 기술개발사업의 지원을 받아 수행된 연구임(2022-MOIS63-001).

참고문헌

  1. Chae, J. E., Park, S. Y. and Byu, B. S. (2014). "An analysis of spatial concentrated areas of single person households and concentrating factors in Seoul." Seoul Studies, Vol. 15, No. 2, pp. 1-16 (in Korean). https://doi.org/10.23129/SEOULS.15.2.201406.1
  2. Cho, D. H. (2013). "Trends and methodological issues in spatial cluster analysis for count data." Journal of the Korean Geographical Society, Vol. 48, No. 5, pp. 768-785 (in Korean).
  3. Dai, A. (2011). "Characteristics and trends in various forms of the palmer drought severity index during 1900-2008." Journal of Geophysical Research Atmospheres, Vol. 116, No. D12.
  4. Jang, M. H. (2016). "Analysis on the characteristics of urban decline using GIS and spatial statistical method: The case of Gwangju metropolitan city." Journal of The Korean Association of Regional Geographers, Vol. 22, No. 2, pp. 424-438 (in Korean).
  5. Jeung, S. J., Park, J. Y., Yang, D. M. and Kim, B. S. (2019). "Modified standardized precipitation index and evaluation of its effectiveness using past extreme drought cases." Journal of the Korean Society of Hazard Mitigation, Vol. 19, No. 7, pp. 117-124 (in Korean). https://doi.org/10.9798/KOSHAM.2019.19.7.117
  6. Kang, H. J. (2008). "Hot spot analysis: Basis of spatial analysis, utilization and understanding of local Moran's I and nearest neighbor analysis." Planning and Policy, Vol. 324, pp. 116-121 (in Korean).
  7. Kim, B. S., Kwon, H. H. and Kim, H. S. (2011). "Impact assessment of climate change on drought risk." Journal of Wetlands Research, Vol. 13, No. 1, pp. 1-11 (in Korean).
  8. Kim, J. E., Park, J. Y., Lee, J. H. and Kim, T. W. (2019). "Socioeconomic vulnerability assessment of drought using principal component analysis and entropy method." Journal of Korea Water Resources Association, KWRA, Vol. 52, No. 6, pp. 441-449 (in Korean).
  9. Kim, J. S., Park, S. Y., Hong, H. P., Chen, J., Choi, S. J., Kim, T. W. and Lee, J. H. (2020). "Drought risk assessment for future climate projections in the Nakdong river basin, Korea." International Journal of Climatology, Vol. 40, No. 10, pp. 4528-4540. https://doi.org/10.1002/joc.6473
  10. Kim, J. U., Lee, B. S., Yoo, J. Y., Kwon, H. H. and Kim, T. W. (2021). "Low-flow frequency analysis and drought outlook in water districts under climate change scenarios: A case study of Gimcheon-si, Korea." Journal of Wetlands Research, Vol. 23, No. 1, pp. 14-26 (in Korean). https://doi.org/10.17663/JWR.2021.23.1.14
  11. Kumar, S. and Parida, B. R. (2021). "Hydroponic farming hotspot analysis using the Getis-Ord Gi* statistic and high-resolution satellite data of Majuli Island, India." Remote Sensing Letters, Vol. 12, No. 4, pp. 408-418. https://doi.org/10.1080/2150704X.2021.1895446
  12. Lee, J. H., Seo, J. W. and Kim, C. J. (2012). "Analysis on trends, periodicities and frequencies of Korean drought using drought indices." Journal of Korea Water Resources Association, KWRA, Vol. 45, No. 1, pp. 75-89 (in Korean). https://doi.org/10.3741/JKWRA.2012.45.1.75
  13. Liu, Y., Liu, Y., Wang, W. and Zhou, H. (2021). "Propagation of soil moisture droughts in a hotspot region: Spatial pattern and temporal trajectory." Journal of Hydrology, Vol. 593, 125906.
  14. Maru, H., Haileslassie, A., Zeleke, T. and Esayas, B. (2022). "Agroecology-based analysis of meteorological drought and mapping its hotspot areas in Awash basin, Ethiopia." Modeling Earth Systems and Environment, Vol. 8, No. 1, pp. 339-360. https://doi.org/10.1007/s40808-021-01101-y
  15. McKee, T. B., Doesken, N. J. and Kleist, J. (1993). "The relationship of drought frequency and duration to time scales." In Proceedings of the 8th Conference on Applied Climatology, Anaheim, California, Vol. 17, No. 22, pp. 179-183.
  16. Meysam, S., Ali-Mohammad, A. A., Arash, A. and Alireza, D. (2012). "Trend and change-point detection for the annual stream-flow series of the Karun River at the Ahvaz hydrometric station." African Journal of Agricultural Research, Vol. 7, No. 32, pp. 4540-4552.
  17. Park, G. B. and Lee, Y. H. (2021). "Current status of water management in the Nakdong river basin." Water for Future, Vol. 54, No. 9, pp. 10-17 (in Korean).
  18. Park, J. Y., Yoo, J. Y., Lee, M. W. and Kim, T. W. (2012). "Assessment of drought risk in korea: focused on data-based drought risk map." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 32, No. 4B, pp. 203-211 (in Korean). https://doi.org/10.12652/KSCE.2012.32.4B.203
  19. Pettitt, A. N. (1979). "A non-parametric approach to the change- point problem." Journal of the Royal Statistical Society: Series C (Applied Statistics), Vol. 28, No. 2, pp. 126-135. https://doi.org/10.2307/2346729
  20. Shin, M. C. and Lee, J. S. (2019). "Examining the factors affecting residential satisfaction of the residents of the urban residential housing in the Seoul Metropolitan area." Appraisal Studies, Vol. 18, No. 3, pp. 167-195 (in Korean). https://doi.org/10.23843/as.18.3.7
  21. Yoon, Y. S., Lee, Y. G., Lee, J. W. and Kim, S. J. (2019). "Short term drought forecasting using seasonal ARIMA model based on SPI and SDI - For Chungju dam and Boryeong dam watersheds." Journal of The Korean Society of Agricultural Engineers, Vol. 61, No. 1, pp. 61-74 (in Korean). https://doi.org/10.5389/KSAE.2019.61.1.061
  22. Zhang, S. and Lu, X. X. (2009). "Hydrological responses to precipitation variation and diverse human activities in a mountainous tributary of the lower Xijiang, China." Catena, Vol. 77, No. 2, pp. 130-142. https://doi.org/10.1016/j.catena.2008.09.001