References
- N. Nedjah, I. Santos, and L. de Macedo Mourelle, "Sentiment analysis using convolutional neural network via word embeddings," Evol. Intell., vol. 15, no. 4, pp. 2295-2319, 2022, doi: 10.1007/s12065-019-00227-4.
- M. Iram, S. U. Rehman, S. Shahid, and S. A. Mehmood, "Anatomy of Sentiment Analysis of Tweets Using Machine Learning Approach," in Proceedings of the Pakistan Academy of Sciences, 2022, vol. 59, no. January, pp. 63-75. https://doi.org/10.53560/PPASA(59-2)771
- B. Agarwal, N. Mittal, P. Bansal, and S. Garg, "Sentiment analysis using common-sense and context information," Comput. Intell. Neurosci., vol. 2015, 2015, doi: 10.1155/2015/715730.
- N. Alami, M. Meknassi, S. Alaoui Ouatik, and N. Ennahnahi, "Arabic text summarization based on graph theory," in International Journal of Computer Applications, 2017, vol. 64, p. 5, doi: 10.1109/AICCSA.2015.7507254.
- H. N. Fejer and N. Omar, "Automatic multi-document Arabic text summarization using clustering and keyphrase extraction," J. Artif. Intell., vol. 8, no. 1, pp. 1-9, 2015, doi: 10.3923/jai.2015.1.9.
- R. Rodriguez-Esteban, "Methods in Biomedical Text Mining," PhD Thesis, Columbia University, 2009.
- and J. R. Blair-Goldensohn, Sasha, Kerry Hannan, Ryan McDonald, Tyler Neylon, George A. Reis, "Building a Sentiment Summarizer for Local Service Reviews," Proc. WWW-2008 Work. NLP Inf. Explos. Era., 2008.
- M. Hameed, F. Tahir, and M. A. Shahzad, "Empirical comparison of sentiment analysis techniques for social media," Int. J. Adv. Appl. Sci., vol. 5, no. 4, pp. 115-123, 2018. https://doi.org/10.21833/ijaas.2018.04.015
- N. Archak, A. Ghose, and P. G. Ipeirotis, "Show me the Money ! Deriving the Pricing Power of Product," Proc. 13th ACM SIGKDD Int. Conf. Knowl. Discov. data Min. - KDD '07, pp. 56-65, 2007, doi: 10.1145/1281192.1281202.
- Y. Chen and J. Xie, "Online Consumer Review: Word-of-Mouth as a New Element of Marketing Communication Mix," Manage. Sci., vol. 54, no. 3, pp. 477-491, 2008, doi: 10.1287/mnsc.1070.0810.
- I. El Alaoui, Y. Gahi, R. Messoussi, Y. Chaabi, A. Todoskoff, and A. Kobi, "A novel adaptable approach for sentiment analysis on big social data," J. Big Data, vol. 5, no. 1, 2018, doi: 10.1186/s40537-018-0120-0.
- D. Grabner, M. Zanker, G. Fliedl, and M. Fuchs, "Classification of Customer Reviews based on Sentiment Analysis," Inf. Commun. Technol. Tour. 2012, pp. 460-470, 2012, doi: 10.1007/978-3-7091-1142-0_40.
- Q. Sun, J. Niu, Z. Yao, and H. Yan, "Exploring eWOM in online customer reviews: Sentiment analysis at a fine-grained level," Eng. Appl. Artif. Intell., vol. 81, pp. 68-78, 2019, doi: 10.1016/j.engappai.2019.02.004.
- J. Jin, P. Ji, and R. Gu, "Identifying comparative customer requirements from product online reviews for competitor analysis," Eng. Appl. Artif. Intell., vol. 49, pp. 61-73, 2016, doi: 10.1016/j.engappai.2015.12.005.
- F. e-M. K. Khan, B.B. Baharudin, A. Khan, "Mining opinion from text documents," Adv. Res. Comput. Commun. Eng., vol. 3, no. 7, pp. 217-222.
- B. Pang and L. Lee, "Opinion mining and sentiment analysis," Found. Trends Inf. Retr., vol. 2, no. 1-2, pp. 1-135, 2008, doi: 10.1561/1500000011.
- M. Z. Asghar, A. Khan, S. Ahmad, and F. M. Kundi, "A Review of Feature Extraction in Sentiment Analysis," J. Basic. Appl. Sci. Res, vol. 4, no. 3, pp. 181-186, 2014.
- A. Kumar, K. Srinivasan, W. H. Cheng, and A. Y. Zomaya, "Hybrid context enriched deep learning model for fine-grained sentiment analysis in textual and visual semiotic modality social data," Inf. Process. Manag., vol. 57, no. 1, 2020, doi: 10.1016/j.ipm.2019.102141.
- S. Wang, D. Li, Y. Wei, and H. Li, "A Feature Selection Method Based on Fisher 's Discriminant Ratio for Text Sentiment Classification Suge," Springer-Verlag Berlin Heidelb., pp. 88-97, 2009.
- A. Esmin and S. Matwin, "Hierarchical Classification Approach to Emotion Recognition in Twitter Hierarchical Classification Approach to Emotion Recognition in Twitter," 2016, no. March, doi: 10.1109/ICMLA.2012.195.
- M. Ahmad, S. Aftab, M. S. Bashir, N. Hameed, I. Ali, and Z. Nawaz, "SVM optimization for sentiment analysis," Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 4, pp. 393-398, 2018, doi: 10.14569/IJACSA.2018.090455.
- M. Abbas, K. Ali Memon, and A. Aleem Jamali, "Multinomial Naive Bayes Classification Model for Sentiment Analysis," IJCSNS Int. J. Comput. Sci. Netw. Secur., vol. 19, no. 3, p. 62, 2019, [Online]. Available: http://paper.ijcsns.org/07_book/201903/20190310.pdf. https://doi.org/10.pdf
- J. Khairnar and M. Kinikar, "Sentiment Analysis Based Mining and Summarizing Using SVM-MapReduce," Int. J. Comput. Sci. Inf. Technol., vol. 5, no. 3, pp. 4081-4085, 2014.
- B. Liu, "Sentiment Analysis and Opinion Mining," Synth. Lect. Hum. Lang. Technol., vol. 5, no. 1, pp. 1-167, 2012, doi: 10.2200/S00416ED1V01Y201204HLT016.
- V. S. D. F. X. Christopher, "Evolving Trends in Conversational Systems with Natural Language Processing," Int. J. Comput. Intell. Informatics, vol. 8, no. 3, pp. 123-129, 2018.
- A. See, "Natural Language Processing with Deep Learning: Natural Language Generation," pp. 1-39, 2019.
- K. Dashtipour, M. Gogate, A. Adeel, H. Larijani, and A. Hussain, "Sentiment analysis of persian movie reviews using deep learning," Entropy, vol. 23, no. 5, 2021, doi: 10.3390/e23050596.
- Q. Tul et al., "Sentiment Analysis Using Deep Learning Techniques: A Review," Int. J. Adv. Comput. Sci. Appl., vol. 8, no. 6, 2017, doi: 10.14569/ijacsa.2017.080657.
- N. C. Dang, M. N. Moreno-Garcia, and F. De la Prieta, "Sentiment analysis based on deep learning: A comparative study," Electron., vol. 9, no. 3, 2020, doi: 10.3390/electronics9030483.
- H. Du, X. Xu, X. Cheng, D. Wu, Y. Liu, and Z. Yu, "Aspect-Specific Sentimental Word Embedding for Sentiment Analysis of Online Reviews," Proc. 25th Int. Conf. Companion World Wide Web, pp. 29-30, 2016, doi: 10.1145/2872518.2889403.
- D. Nguyen, K. Vo, D. Pham, M. Nguyen, and T. Quan, "A deep architecture for sentiment analysis of news articles," Adv. Intell. Syst. Comput., vol. 629, pp. 129-140, 2018, doi: 10.1007/978-3-319-61911-8_12.
- X. Ouyang, P. Zhou, C. H. Li, and L. Liu, "Sentiment analysis using convolutional neural network," Proc. - 15th IEEE Int. Conf. Comput. Inf. Technol. CIT 2015, 14th IEEE Int. Conf. Ubiquitous Comput. Commun. IUCC 2015, 13th IEEE Int. Conf. Dependable, Auton. Se, pp. 2359-2364, 2015, doi: 10.1109/CIT/IUCC/DASC/PICOM.2015.349.
- J. Monsen and E. Rennes, "Perceived Text Quality and Readability in Extractive and Abstractive Summaries," Lang. Resour. Eval. Conf. Lr. 2022, no. June, pp. 305-312, 2022.