DOI QR코드

DOI QR Code

AN EFFECTIVE SEGMENT PRE-FETCHING FOR SHORT-FORM VIDEO STREAMING

  • Nguyen Viet Hung (Faculty of Information Technology, East Asia University of Technology) ;
  • Truong Thu Huong (School of Electrical and Electronic Engineering, Hanoi University of Science and Technology)
  • 투고 : 2023.03.05
  • 발행 : 2023.03.30

초록

The popularity of short-form video platforms like TikTok has increased recently. Short-form videos are significantly shorter than traditional videos, and viewers regularly switch between different types of content to watch. Therefore, a successful prefetching strategy is essential for this novel type of video. This study provides a resource-effective prefetching technique for streaming short-form videos. The suggested solution dynamically adjusts the quantity of prefetched video data based on user viewing habits and network traffic conditions. The results of the experiments demonstrate that, in comparison to baseline approaches, our method may reduce data waste by 21% to 83%, start-up latency by 50% to 99%, and the total time of Re-buffering by 90% to 99%.

키워드

과제정보

This research is funded by Hanoi University of Science and Technology (HUST) under Project number T2022-PC-012. Also, we would like to thank Mrs. Phan Thi Yen, Ms. Bui Anh Thu, Ms. Nguyen Mai Cham of the East Asia University of Technology for supporting us in the experiments.

참고문헌

  1. "Ericsson mobility report," https://www.ericsson.com/4ad7e9/assets/ local/reports-papers/mobility-report/documents/2021/ericsson-mobility-report-november-2022.pdf, June 2022.
  2. "Tiktok," https://www.tiktok.com, accessed: 2022-08-10.
  3. D. Klug, Y. Qin, M. Evans, and G. Kaufman, "Trick and please. A mixed-method study on user assumptions about the tiktok algorithm," in 13th ACM Web Science Conference 2021, ser. WebSci '21. New York, NY, USA: Association for Computing Machinery, 2021, p. 84-92. [Online]. Available: https://doi.org/10.1145/3447535.3462512
  4. "Douyin," https://www.douyin.com, accessed: 2022-08-09.
  5. L. Sun, H. Zhang, S. Zhang, and J. Luo, "Content-based analysis of the cultural differences between tiktok and douyin," in 2020 IEEE International Conference on Big Data (Big Data), 2020, pp. 4779-4786.
  6. T. Shao, R. Wang, and J.-X. Hao, "Visual destination images in user-generated short videos: An exploratory study on douyin," in 2019 16th International Conference on Service Systems and Service Management (ICSSSM), 2019, pp. 1-5.
  7. "Youtube short," https://www.youtube.com/shorts, accessed: 2022-08-09.
  8. A. M. Putri, D. A. P. Basya, M. T. Ardiyanto, and I. Sarathan, "Sentiment analysis of youtube video comments with the topic of starlink mission using long short term memory," in 2021 International Conference on Artificial Intelligence and Big Data Analytics, 2021, pp. 28-32.
  9. M. E. D. Klug, Y. Qin and G. Kaufman, ""trick and please. a mixedmethod study on user ssumptions about the tiktok algorithm," Virtual Event, United Kingdom, p. 84-92, 2021.
  10. G. Zhang, K. Liu, H. Hu, and J. Guo, "Short video streaming with data wastage awareness," in 2021 IEEE International Conference on Multimedia and Expo (ICME), Shenzhen, China, 2021, pp. 1-6.
  11. Y. Zhang, Y. Liu, L. Guo, and J. Y. B. Lee, "Measurement of a large-scale short-video service over mobile and wireless networks," IEEE Transactions on Mobile Computing, pp. 1-1, 2022.
  12. H. K. Yarnagula, P. Juluri, S. K. Mehr, V. Tamarapalli, and D. Medhi, "Qoe for mobile clients with segment-aware rate adaptation algorithm (sara) for dash video streaming," ACM Trans. Multimedia Comput. Commun. Appl., vol. 15, no. 2, jun 2019. [Online]. Available: https://doi.org/10.1145/3311749
  13. X. Chen, T. Tan, and G. Cao, "Energy-aware and context-aware video streaming on smartphones," in 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), 2019, pp. 861-870.
  14. G. Huang, W. Gong, B. Zhang, C. Li, and C. Li, "An online buffer-aware resource allocation algorithm for multiuser mobile video streaming," IEEE Transactions on Vehicular Technology, vol. 69, no. 3, pp. 3357-3369, 2020. https://doi.org/10.1109/TVT.2020.2966701
  15. T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson, "A buffer-based approach to rate adaptation: Evidence from a large video streaming service," in Proceedings of the 2014 ACM conference on SIGCOMM, 2014, pp. 187-198.
  16. G. Zhang, J. Zhang, K. Liu, J. Guo, J. Lee, H. Hu, and V. Aggarwal, "Du-asvs: A mobile data saving strategy in short-form video streaming," IEEE Transactions on Services Computing, pp. 1-1, 2022.
  17. D. Ran, Y. Zhang, W. Zhang, and K. Bian, "Ssr: Joint optimization of recommendation and adaptive bitrate streaming for short-form video feed," in 2020 16th International Conference on Mobility, Sensing and Networking (MSN), 2020, pp. 418-426.
  18. D. Ran, H. Hong, Y. Chen, B. Ma, Y. Zhang, P. Zhao, and K. Bian, "Preference-aware dynamic bitrate adaptation for mobile short-form video feed streaming," IEEE Access, vol. 8, pp. 220 083-220 094, 2020. https://doi.org/10.1109/ACCESS.2020.3042619
  19. P. Voigt and A. Von dem Bussche, "The EU general data protection regu-lation (GDPR)," A Practical Guide, 1st Ed., Cham: Springer International Publishing, vol. 10, no. 3152676, pp. 10-5555,
  20. S. McLachlan, "Instagram reels algorithm: Everything you need to know," https://blog.hootsuite.com/instagram-reels-algorithm/, 2022-05-18.
  21. F. W. Lei Zhang and J. Liu, "Mobile instant video clip sharing with screen scrolling: Measurement and enhancement," in IEEE Transactions on Multi-media 20. IEEE, 2018, p. 2022-2034.
  22. Z. Chen, Q. He, Z. Mao, H.-M. Chung, and S. Maharjan, "A study on the characteristics of douyin short videos and implications for edge caching," in Proceedings of the ACM Turing Celebration Conference-China, 2019, pp. 1-6.
  23. Y. Zhang, P. Li, Z. Zhang, B. Bai, G. Zhang, W. Wang, and B. Lian, "Chal-lenges and chances for the emerging short video network," in IEEE INFOCOM 2019 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 2019, pp. 1025-1026.
  24. J. He, M. Hu, Y. Zhou, and D. Wu, "Liveclip: Towards intelligent mobile short-form video streaming with deep reinforcement learning," in Proceedings of the 30th ACM Workshop on Network and Operating Systems Support for Digital Audio and Video, ser. NOSSDAV '20, Istanbul, Turkey, 2020, p. 54-59.
  25. J. Guo and G. Zhang, "A video-quality driven strategy in short video streaming," in Proceedings of the 24th International ACM Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, Alicante Spain, 2021, p. 221-228.
  26. S. Sengupta, N. Ganguly, S. Chakraborty, and P. De, "Hotdash: Hotspot aware adaptive video streaming using deep reinforcement learning," in 2018 IEEE 26th International Conference on Network Protocols (ICNP), 2018, pp. 165-175.
  27. A. Singh, N. Thakur, and A. Sharma, "A review of supervised machine learning algorithms," in 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom). Ieee, 2016, pp. 1310-1315.
  28. V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al., "Human-level control through deep reinforcement learning," nature, vol. 518, no. 7540, pp. 529-533, 2015. https://doi.org/10.1038/nature14236
  29. G. Zhang, K. Liu, H. Hu, V. Aggarwal, and J. Y. Lee, "Post-streaming wastage analysis-a data wastage aware framework in mobile video streaming," IEEE Transactions on Mobile Computing, vol. 22, no. 1, pp. 389-401, 2021. https://doi.org/10.1109/TMC.2021.3069764
  30. D. Nguyen, P. Nguyen, V. Long, T. T. Huong, and P. N. Nam, "Network-aware prefetching method for short-form video streaming," in 2022 IEEE 24th International Workshop on Multimedia Signal Processing (MMSP), 2022, pp. 1-5.
  31. H. T. Le, N. P. Ngoc, A. T. Pham, and T. C. Thang, "A probabilistic adaptation method for http low-delay live streaming over mobile networks," IEICE TRANSACTIONS on Information and Systems, vol. 100, no. 2, pp. 379-383,
  32. D. Deshpande and S. Deshpande, "Analysis of various characteristics of online user behavior models," International Journal of Computer Applications, vol. 161, no. 11, pp. 5-10, Mar 2017. [Online]. Available: http://www.ijcaonline.org/archives/volume161/number11/27190-2017913127 https://doi.org/10.5120/ijca2017913127
  33. J. He, M. Hu, Y. Zhou, and D. Wu, "Liveclip: Towards intelligent mobile short-form video streaming with deep reinforcement learning," in Proceedings of the 30th ACM Workshop on Network and Operating Systems Support for Digital Audio and Video, ser. NOSSDAV '20. New York, NY, USA: Association for Computing Machinery, 2020, p. 54-59. [Online]. Available: https://doi.org/10.1145/3386290.3396937