참고문헌
- Han, Ji Yeong & Heo, Go Eun (2021). Analyzing students' non-face-to-face course evaluation by topic modeling and developing deep learning-based classification model. Journal of the Korean Society for Library and Information Science, 55(4), 267-291. http://dx.doi.org/10.4275/KSLIS.2021.55.4.267
- Kim, In Hu & Kim, Seong hee (2022). Automatic classification of academic articles using BERT model based on deep learning. Journal of the Korean Society for Information Management, 39(3), 293-310. http://dx.doi.org/10.3743/KOSIM.2022.39.3.293
- Kim, Pan Jun (2008). A study on the performance improvement of rocchio classifier with term weighting methods. Journal of the Korean Society for Information Management, 25(1), 211-233. http://dx.doi.org/10.3743/KOSIM.2008.25.1.211
- Kim, Pan Jun (2016). An analytical study on performance factors of automatic classification based on machine learning. Journal of the Korean Society for information Management, 33(2), 33-59. http://dx.doi.org/10.3743/KOSIM.2016.33.2.033
- Kim, Pan Jun (2018). An analytical study on automatic classification of domestic journal articles based on machine learning. Journal of the Korean Society for Information Management, 35(2), 37-62. https://doi.org/10.3743/KOSIM.2018.35.2.037
- Kim, Pan Jun (2022). An experimental study on the automatic classification of korean journal articles through feature selection. Journal of the Korean Society for Information Management, 39(1), 69-90. http://dx.doi.org/10.3743/KOSIM.2022.39.1.069
- Lee, Jae-Yun (2005). An empirical study on improving the performance of text categorization considering the relationships between feature selection criteria and weighting methods. Journal of the Korean Society for Library and Information Science, 39(2), 123-146. http://dx.doi.org/10.4275/kslis.2005.39.2.123
- Yuk, JeeHee & Song, Min (2018). A study of research on methods of automated biomedical document classification using topic modeling and deep learning. Journal of the Korean Society for Information Management, 35(2), 63-88. http://dx.doi.org/10.3743/KOSIM.2018.35.2.063
- Abiodun, E. O., Alabdulatif, A., Abiodun, O. I., Alawida, M., Alabdulatif, A., & Alkhawaldeh, R. S. (2021). A systematic review of emerging feature selection optimization methods for optimal text classification: the present state and prospective opportunities. Neural Computing & Applications, 33(4), 1-28. https://doi.org/10.1007/s00521-021-06406-8
- Aggarwal, C. C. & Zhai, C. (2012). A Survey of Text Classification Algorithms. In: Aggarwal, C., Zhai, C. (eds) Mining Text Data. https://doi.org/10.1007/978-1-4614-3223-4_6
- Agnihotri, D., Verma, K., & Tripathi, P. (2017). Variable global feature selection scheme for automatic classification of text documents. Expert Systems with Applications, 81, 268-281. https://doi.org/10.1016/j.eswa.2017.03.057
- Avila-Arguelles, R., Calvo, H., Gelbukh, A., & Godoy-Calderon, S. (2010). Assigning Library of Congress Classification codes to books based only on their titles. Informatica, 34(1), 77-84.
- Azam, N. & Yao, J. (2012). Comparison of term frequency and document frequency based feature selection metrics in text categorization. Expert Systems with Applications, 39(5), 4760-4768. https://doi.org/10.1016/j.eswa.2011.09.160
- Baccianella, S., Esuli, A., & Sebastiani, F. (2013). Using micro-documents for feature selection: The case of ordinal text classification. Expert Systems with Applications, 40(11), 4687-4696. https://doi.org/10.1016/j.eswa.2013.02.010
- Bolon-Canedo, V. & Alonso-Betanzos, A. (2019). Ensembles for feature selection: A review and future trends. Information Fusion, 52, 1-12. https://doi.org/10.1016/j.inffus.2018.11.008
- Cai, J., Luo, J., Wang, S., & Yang, S. (2018). Feature selection in machine learning: A new perspective. Neurocomputing, 300, 70-79. https://doi.org/10.1016/j.neucom.2017.11.077
- Cai, Z. & Zhu, W. (2018). Multi-label feature selection via feature manifold learning and sparsity regularization. International journal of machine learning and cybernetics, 9(8), 1321-1334. https://doi.org/10.1007/s13042-017-0647-y
- Chang, F., Guo, J., Xu, W., & Yao, K. (2015). A Feature Selection Method to Handle Imbalanced Data in Text Classification. Journal of Digital Information Management, 13, 169-175.
- Chen, J., Huang, H., Tian, S., & Qu, Y. (2009). Feature selection for text classification with Naive Bayes. Expert Systems with Applications, 36(3), 5432-5435. https://doi.org/10.1016/j.eswa.2008.06.054
- Cunha, W., Mangaravite, V., Gomes, C., Canuto, S., Resende, E., Nascimento, C., Viegas, F., Franca, C., Martins, W. S., Almeida, J. M., Rosa, T., Rocha, L., & Goncalves, M. A. (2021). On the cost-effectiveness of neural and non-neural approaches and representations for text classification: A comprehensive comparative study. Information Processing & Management, 58(3), 102481. https://doi.org/10.1016/j.ipm.2020.102481
- Dash, M. & Liu, H. (1997). Feature selection for classification. Intelligent data analysis, 1, 131-156. https://doi.org/10.1016/S1088-467X(97)00008-5
- Deng, X., Li, Y., Weng, J., & Zhang, J. (2019). Feature selection for text classification: A review. Multimedia Tools and Applications, 78, 3797-3816. https://doi.org/10.1007/s11042-018-6083-5
- Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. https://arxiv.org/abs/1810.04805
- Forman, G. (2003). An extensive empirical study of feature selection metrics for text classification. Journal of Machine Learning Research, 3, 1289-1305.
- Gunal, S. (2012). Hybrid feature selection for text classification. Turkish Journal of Electrical Engineering and Computer Science, 20(Sup.2), 1296-1311. https://doi.org/10.3906/elk-1101-1064
- Guyon, I. & Elisseeff, A. (2003). An introduction to variable and feature selection. The Journal of Machine Learning Research, 3, 1157-1182.
- Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene selection for cancer classification using support vector machines. Machine Learning, 46(1), 389-422. https://doi.org/10.1023/A:1012487302797
- Han, E. H. & Karypis, G. (2000). Centroid-based document classification: Analysis and experimental results. In European conference on principles of data mining and knowledge discovery, 421-431. https://doi.org/10.1007/3-540-45372-5_46
- Harish, B. & Revanasiddappa, M. (2017). A comprehensive survey on various feature selection methods to categorize text documents. International Journal of Computer Applications, 164, 1-7. http://doi.org/10.5120/ijca2017913711
- Iqbal, M., Abid, M. M., Khalid, M. N., & Manzoor, A. (2020). Review of feature selection methods for text classification. International Journal of Advanced Computer Research, 10(49), 138-152. http://dx.doi.org/10.19101/IJACR.2020.1048037
- Javed, K., Babri, H. A., & Saeed, M. (2010). Feature selection based on class-dependent densities for high-dimensional binary data. IEEE Transactions on Knowledge and Data Engineering, 24(3), 465-477. http://dx.doi.org/10.1109/TKDE.2010.263
- Joachims, T. (1996). A Probabilistic Analysis of the Rocchio Algorithm with TFIDF for Text Categorization. Carnegie-Mellon University Dept of Computer Science. Available: https://apps.dtic.mil/sti/citations/ADA307731
- Joachims, T. (2002). Learning to classify text using support vector machines: Methods, theory and algorithms. Massachusetts: Kluwer Academic Publishers.
- Kohavi, R. & John, G. H. (1997). Wrappers for feature subset selection. Artificial intelligence, 97(1-2), 273-324. https://doi.org/10.1016/S0004-3702(97)00043-X
- Kumar, V. & Minz, S. (2014). Feature selection: a literature review. Smart Computing Review, 4(3), 211-229. htts://doi.org/10.6029/smartcr.2014.03.007
- Lan, M., Tan, C. L., Su, J., & Lu, Y. (2008). Supervised and traditional term weighting methods for automatic text categorization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(4), 721-735. https://doi.org/10.1109/TPAMI.2008.110
- Lazar, C., Taminau, J., Meganck, S., Steenhoff, D., Coletta, A., Molter, C., De Schaetzen, V., Duque, R., Bersini, H., & Nowe, A. (2012). A survey on filter techniques for feature selection in gene expression microarray analysis. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 9(4), 1106-1119. https://doi.org/10.1109/TCBB.2012.33
- Li, Y., Li, T., & Liu, H. (2017). Recent advances in feature selection and its applications. Knowledge and Information Systems, 53(3), 551-577. https://doi.org/10.1007/s10115-017-1059-8
- Liu, H. & Yu, L. (2005). Toward integrating feature selection algorithms for classification and clustering. IEEE Transactions on Knowledge and Data Engineering, 17(4), 491-502. https://doi.org/10.1109/TKDE.2005.66
- Mesleh, A. M. (2011). Feature sub-set selection metrics for arabic text classification. Pattern Recognition Letters, 32(14), 1922-1929. https://doi.org/10.1016/j.patrec.2011.07.010
- Parlak, B. & Uysal, A. K. (2021). A novel filter feature selection method for text classification: Extensive Feature Selector. Journal of Information Science, 49(1), 59-78. https://doi.org/10.1177/0165551521991037
- Pinheiro, R. H., Cavalcanti, G. D., & Ren, T. I. (2015). Data-driven global-ranking local feature selection methods for text categorization. Expert Systems with Applications, 42(4), 1941-1949. https://doi.org/10.1016/j.eswa.2014.10.011
- Pintas, J. T., Fernandes, L. A. F., & Garcia, A. C. B. (2021). Feature selection methods for text classification: a systematic literature review. Artificial Intelligence Review, 54, 6149-6200. https://doi.org/10.1007/s10462-021-09970-6
- Rehman, A., Javed, K., & Babri, H. A. (2017). Feature selection based on a normalized difference measure for text classification. Information Processing & Management, 53(2), 473-489. https://doi.org/10.1016/j.ipm.2016.12.004.
- Rehman, A., Javed, K., Babri, H. A., & Asim, N. (2018). Selection of the most relevant terms based on a max-min ratio metric for text classification. Expert Systems with Applications, 114, 78-96. https://doi.org/10.1016/j.eswa.2018.07.028
- Sebastiani, F. (2002). Machine learning in automated text categorization. ACM Computing Surveys, 34(1), 1-47. https://doi.org/10.1145/505282.505283
- Shang, W., Huang, H., Zhu, H., Lin, Y., Qu, Y., & Wang, Z. (2007). A novel feature selection algorithm for text categorization. Expert Systems with Applications, 33(1), 1-5. https://doi.org/10.1016/j.eswa.2006.04.001
- Su, J., Shirab, J. S., & Matwin, S. (2011). Large scale text classification using semi-supervised multinomial naive bayes. In Proceedings of the 28th International Conference on International Conference on Machine Learning (ICML'11), 97-104. Available: http://www.icml-2011.org/papers/93_icmlpaper.pdf
- Talavera, L. (2005). An evaluation of filter and wrapper methods for feature selection in categorical clustering. In: Famili, A. F., Kok, J.N ., Pena, J. M., Siebes, A., Feelders, A. (eds) Advances in intelligent data analysis VI. IDA 2005. Lecture Notes in Computer Science, 3646. https://doi.org/10.1007/11552253_40
- Uysal, A. K. (2016). An improved global feature selection scheme for text classification. Expert Systems with Applications, 43(1), 82-92. https://doi.org/10.1016/j.eswa.2015.08.050
- Van Hulse, J., Khoshgoftaar, T. M., & Napolitano, A. (2011). A comparative evaluation of feature ranking methods for high dimensional bioinformatics data. In 2011 IEEE International Conference on Information Reuse & Integration, 2011, 315-320. https://doi.org/10.1109/IRI.2011.6009566
- Venkatesh, B. & Anuradha, J. (2019). A review of feature selection and its methods. Cybernetics and Information Technologies, 19(1), 3-26. https://doi.org/10.2478//cait-2019-0001
- Wang, D, Zhang, H., Liu, R., & Lv, W. (2012). Feature selection based on term frequency and T-test for text categorization. IProceedings of the 21st ACM International Conference on Information and Knowledge Management, 1482-1486. https://doi.org/10.1145/2396761.2398457
- Wang, D., Zhang, H., Liu, R., Liu, X., & Wang, J. (2016). Unsupervised feature selection through gram-Schmidt orthogonalization-A word co-occurrence perspective. Neurocomputing, 173(P3), 845-854. https://doi.org/10.1016/j.neucom.2015.08.038
- Wang, D., Zhang, H., Liu, R., Lv, W., & Wang, D. (2014). t-test feature selection approach based on term frequency for text categorization. Pattern Recognition Letters, 45, 1-10. https://doi.org/10.1016/j.patrec.2014.02.013
- Wang, H. & Hong, M. (2019). Supervised Hebb rule based feature selection for text classification. Information Processing & Management, 56(1), 167-191. https://doi.org/10.1016/j.ipm.2018.09.004
- Wu, G. & Xu, J. (2015). Optimized approach of feature selection based on information gain. In 2015 International Conference on Computer Science and Mechanical Automation, 157-161. https://doi.org/10.1109/CSMA.2015.38
- Wu, Y. & Zhang, A. (2004). Feature selection for classifying high-dimensional numerical data. Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004, CVPR 2004, 2, 251-258. http://doi.org/10.1109/CVPR.2004.1315171
- Yang, Y. & Pedersen. J. O. (1997). A comparative study on feature selection in text categorization. Proceedings of the Fourteenth International Conference on Machine Learning, 412-420.
- Yao, H., Liu, C., Zhang, P., & Wang, L. (2017). A feature selection method based on synonym merging in text classification system. EURASIP Journal on Wireless Communications and Networking, 2017(1), 1-8. https://doi.org/10.1186/s13638-017-0950-z