DOI QR코드

DOI QR Code

Effect of Cordyceps militaris mycelia containing improved cordycepin on expression gene in the melanin biosynthesis pathway

  • Si Young Ha (Department of Environmental Materials Science, Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Ji Young Jung (Department of Environmental Materials Science, Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Jae-Kyung Yang (Department of Environmental Materials Science, Institute of Agriculture and Life Science, Gyeongsang National University)
  • 투고 : 2023.03.06
  • 심사 : 2023.03.21
  • 발행 : 2023.03.31

초록

This study aimed to verify the whitening effect of Cordyceps militaris, which is distributed in several countries worldwide, including Korea, Japan, and China, and has various medical effects. To screen the efficacy of C. militaris, the inhibitory activity of tyrosinase, which was 66% at a concentration of 1 mg/mL, was measured. Thereafter, the survival rate of melanoma cells was measured, and cell experiments were conducted at a concentration of 90% or more in which C. militaris was not toxic to cells. After measuring the inhibitory effect of TRP-1, TRP-2, tyrosinase protein, and mRNA expression, which are factors influencing melanin synthesis, C. militaris was found to decrease in all factors, with an expression level that was significantly lower compared to quercetin. This confirmed that C. militaris stimulated with LED has excellent whitening activity and can be used as a functional whitening cosmetics material.

키워드

과제정보

This study was carried out with the support of 'R&D Program for Forest Science Technology (Project No. 2020186D10-2222-AA0261382116530003)' provided by Korea Forest Service (Korea Forestry Promotion Institute).

참고문헌

  1. Ando H, Niki Y, Ito M, Akiyama K, Matsui MS, Yarosh DB, Ichihashi M. 2012. Melanosomes are transferred from melanocytes to keratinocytes through the processes of packaging, release, uptake, and dispersion. J Invest Dermatol 132: 1222-1229. https://doi.org/10.1038/jid.2011.413
  2. Aoki H, Moro O. 2002. Involvement of microphthalmia-associated transcription factor (MITF) in expression of human melanocortin-1 receptor (MC1R). Life Sci 71: 2171-2179. https://doi.org/10.1016/S0024-3205(02)01996-3
  3. Blay YA. 2011. Skin bleaching and global white supremacy: By way of introduction. J Pan Afr Stud 4: 4-46.
  4. Busca R, Ballotti R. 2000. Cyclic AMP a key messenger in the regulation of skin pigmentation. Pigment Cell Res 13: 60-69. https://doi.org/10.1034/j.1600-0749.2000.130203.x
  5. Casalou C, Moreiras H, Mayatra JM, Fabre A, Tobin DJ. 2022. Loss of 'epidermal melanin unit'integrity in human skin during melanoma-genesis. Front Oncol 12: .
  6. Chaicharoenaudomrung N, Jaroonwitchawan T, Noisa P. 2018. Cordycepin induces apoptotic cell death of human brain cancer through the modulation of autophagy. Toxicol In Vitro 46: 113-121. https://doi.org/10.1016/j.tiv.2017.10.002
  7. Chen HY, Cheng KC, Wang HT, Hsieh CW, Lai YJ. 2021. Extracts of Antrodia cinnamomea mycelium as a highly potent tyrosinase inhibitor. J Cosmet Dermatol 20: 2341-2349. https://doi.org/10.1111/jocd.13847
  8. Chien CC, Tsai ML, Chen CC, Chang SJ, Tseng CH. 2008. Effects on tyrosinase activity by the extracts of Ganoderma lucidum and related mushrooms. Mycopathologia 166: 117-120. https://doi.org/10.1007/s11046-008-9128-x
  9. Cui JD. 2015. Biotechnological production and applications of Cordyceps militaris, a valued traditional Chinese medicine. Crit Rev Biotechnol 35: 475-484. https://doi.org/10.3109/07388551.2014.900604
  10. Di Petrillo A, Gonzalez-Paramas AM, Era B, Medda R, Pintus F, Santos-Buelga C, Fais A. 2016. Tyrosinase inhibition and antioxidant properties of Asphodelus microcarpus extracts. BMC Complement Altern Med 16: 1-9. https://doi.org/10.1186/s12906-016-1442-0
  11. Dobrynin D, Fridman G, Friedman G, Fridman A. 2009. Physical and biological mechanisms of direct plasma interaction with living tissue. New J Phys 11: 115020.
  12. Ha SY, Jung JY, Park JH, Lee DH, Choi JW, Yang JK. 2020. Effect of light-emitting diodes on cordycepin production in submerged Cordyceps militaris cultures. J Mushroom 18: 10-19.
  13. Jin ML, Park SY, Kim YH, Park G, Son HJ, Lee SJ. 2012. Suppression of α-MSH and IBMX-induced melanogenesis by cordycepin via inhibition of CREB and MITF, and activation of PI3K/Akt and ERK-dependent mechanisms. Int J Mol Med 29: 119-124.
  14. Kim H, Naura AS, Errami Y, Ju J, Boulares AH. 2011. Cordycepin blocks lung injury-associated inflammation and promotes BRCA1-deficient breast cancer cell killing by effectively inhibiting PARP. Mol Med 17: 893-900. https://doi.org/10.2119/molmed.2011.00032
  15. Kohen R. 1999. Skin antioxidants: their role in aging and in oxidative stress-new approaches for their evaluation. Biomed Pharmacother 53: 181-192. https://doi.org/10.1016/S0753-3322(99)80087-0
  16. Krainc T, Monje MH, Kinsinger M, Bustos BI, Lubbe SJ. 2023. Melanin and neuromelanin: linking skin pigmentation and Parkinson's disease. Mov Disord 38: 185-195. https://doi.org/10.1002/mds.29260
  17. Liu YJ, Lyu JL, Kuo YH, Chiu CY, Wen KC, Chiang HM. 2021. The anti-melanogenesis effect of 3, 4-Dihydroxybenzalacetone through downregulation of melanosome maturation and transportation in B16F10 and human epidermal melanocytes. Int J Mol Sci 22: 2823.
  18. Lu H, Li X, Zhang J, Shi HUI, Zhu X, He X. 2014. Effects of cordycepin on HepG2 and EA. hy926 cells: Potential antiproliferative, antimetastatic and anti-angiogenic effects on hepatocellular carcinoma. Oncol Lett 7: 1556-1562. https://doi.org/10.3892/ol.2014.1965
  19. Naik PP, Farrukh SN. 2022. Influence of ethnicities and skin color variations in different populations: a review. Skin Pharmacol Physiol 35: 65-76. https://doi.org/10.1159/000518826
  20. Pillaiyar T, Manickam M, Namasivayam V. 2017. Skin whitening agents: Medicinal chemistry perspective of tyrosinase inhibitors. J Enzyme Inhib Med Chem 32: 403-425. https://doi.org/10.1080/14756366.2016.1256882
  21. Shashidhar MG, Giridhar P, Sankar KU, Manohar B. 2013. Bioactive principles from Cordyceps sinensis: A potent food supplement- a review. J Funct Foods 5: 1013-1030. https://doi.org/10.1016/j.jff.2013.04.018
  22. Sulkowska-Ziaja K, Zengin G, Gunia-Krzyzak A, Popiol J, Szewczyk A, Jaszek M, Rogalski J, Muszynska, B. 2022. Bioactivity and mycochemical profile of extracts from mycelial cultures of Ganoderma spp. Molecules 27: 1-15. https://doi.org/10.3390/molecules27010275
  23. Sun L, Guo Y, Zhang Y, Zhuang Y. 2017. Antioxidant and anti-tyrosinase activities of phenolic extracts from rape bee pollen and inhibitory melanogenesis by cAMP/MITF/TYR pathway in B16 mouse melanoma cells. Front Pharmacol 8: 1-9. https://doi.org/10.3389/fphar.2017.00104
  24. Verma AK. 2022. Cordycepin: A bioactive metabolite of Cordyceps militaris and polyadenylation inhibitor with therapeutic potential against COVID-19. J Biomol Struct Dyn 40: 3745-3752. https://doi.org/10.1080/07391102.2020.1850352
  25. Yagi A, Kanbara T, Morinobu N. 1986. Inhibition of mushroom tyrosinase by aloe extract. Planta Med 53: 515-517. https://doi.org/10.1055/s-2006-962798
  26. Yoshikawa N, Yamada S, Takeuchi C, Kagota S, Shinozuka K, Kunitomo M, Nakamura K. 2008. Cordycepin (3'-deoxyadenosine) inhibits the growth of B16-BL6 mouse melanoma cells through the stimulation of adenosine A 3 receptor followed by glycogen synthase kinase-3β activation and cyclin D 1 suppression. Naunyn Schmiedebergs Arch Pharmacol 377: 591-595. https://doi.org/10.1007/s00210-007-0218-y
  27. Zaidi KU, Ali SA, Ali A, Naaz I. 2019. Natural tyrosinase inhibitors: Role of herbals in the treatment of hyperpigmentary disorders. Mini Rev Med Chem 19: 796-808. https://doi.org/10.2174/1389557519666190116101039
  28. Zhou X, Gong Z, Su Y, Lin J, Tang K. 2009. Cordyceps fungi: natural products, pharmacological functions and developmental products. J Pharm Pharmacol 61: 279-291. https://doi.org/10.1211/jpp.61.03.0002