DOI QR코드

DOI QR Code

The preparation of surface-modified granular activated carbon (GAC) to enhance Perfluorooctanoic acid (PFOA) removal and evaluation of adsorption behavior

입상 활성탄 표면 개질을 통한 과불화옥탄산 (PFOA) 제거 향상 및 특성 평가

  • Jeongwoo Shin (Department of Civil, Environmental, and Biomedical Engineering, Sangmyung University) ;
  • Byungryul An (Department of Civil Engineering, Sangmyung University)
  • 신정우 (상명대학교 건설.환경.의생명공학과) ;
  • 안병렬 (상명대학교 건설시스템공학과)
  • Received : 2023.04.04
  • Accepted : 2023.07.03
  • Published : 2023.08.15

Abstract

Perfluorooctanoic acid(PFOA) was one of widely used per- and poly substances(PFAS) in the industrial field and its concentration in the surface and groundwater was found with relatively high concentration compared to other PFAS. Since various processes have been introduced to remove the PFOA, adsorption using GAC is well known as a useful and effective process in water and wastewater treatment. Surface modification for GAC was carried out using Cu and Fe to enhance the adsorption capacity and four different adsorbents, such as GAC-Cu, GAC-Fe, GAC-Cu(OH)2, GAC-Fe(OH)3 were prepared and compared with GAC. According to SEM-EDS, the increase of Cu or Fe was confirmed after surface modification and higher weight was observed for Cu and Fe hydroxide(GAC-Cu(OH)2 and GAC-Fe(OH)3, respectively). BET analysis showed that the surface modification reduced specific surface area and total pore volumes. The highest removal efficiency(71.4%) was obtained in GAC-Cu which is improved by 17.9% whereas the use of Fe showed lower removal efficiency compared to GAC. PFOA removal was decreased with increase of solution pH indicating electrostatic interaction governs at low pH and its effect was decreased when the point of zero charges(pzc) was negatively increased with an increase of pH. The enhanced removal of PFOA was clearly observed in solution pH 7, confirming the Cu in the surface of GAC plays a role on the PFOA adsorption. The maximum uptake was calculated as 257 and 345 ㎍/g for GAC and GAC-Cu using Langmuir isotherm. 40% and 80% of removal were accomplished within 1 h and 48 h. According to R2, only the linear pseudo-second-order(pso) kinetic model showed 0.98 whereas the others obtained less than 0.870.

Keywords

Acknowledgement

본 성과는 환경부 및 한국환경산업기술원의 2023년도 녹색융합전문인력양성 지원사업과 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No.2022R1A2C1092752)

References

  1. Ahn, S.K., Park, K.Y., Song, W.J., Park, Y.M., and Kweon, J.H. (2022). Adsorption mechanisms on perfluorooctanoic acid by FeCl3 modified granular activated carbon in aqueous solutions, Chemosphere, 303, 134965.
  2. An, S.K., Song, W.J., Park, Y.M., Yang, H.A., and Kweon, J.H. (2020). Effects of chemical modification on surface characteristics and 2, 4-dichlorophenol adsorption on activated carbon, J. Korean Soc. Water Wastewater, 34(6), 425-435. https://doi.org/10.11001/jksww.2020.34.6.425
  3. Bao, Y., Niu, J., Xu, Z., Gao, D., Shi, J., Sun, X., and Huang, Q. (2014). Removal of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) from water by coagulation: mechanisms and influencing factors, J. Coll. Interface Sci., 434, 59-64. https://doi.org/10.1016/j.jcis.2014.07.041
  4. Boiteux, V., Dauchy, X., Rosin, C., and Munoz, J., (2012). National screening study on 10 perfluorinated compounds in raw and treated tap water in France, Arch. Environ. Contam. Toxicol., 63, 1-12. https://doi.org/10.1007/s00244-012-9754-7
  5. Blanchard, G. Maunaye, M. and Martin, G. (1984). Removal of heavy metals from waters by means of natural zeolites, Water Res., 18, 1501-1507. https://doi.org/10.1016/0043-1354(84)90124-6
  6. Cho, G.H., Park, J.H., Rasheed, H.U., Yoon, H.C., and Yi, K.B. (2020). A study on the adsorption and desorption characteristics of metal-impregnated activated carbons with metal precursors for the regeneration and concentration of ammonia, Clean Technol., 26(2), 137-144.
  7. Choi, S., Lee, W., Kim, Y.M., Hong, S.W., Son, H., and Lee, Y. (2021). A review on status of organic micropollutants from sewage effluent and their management strategies, J. Korean Soc. Water Wastewater, 35(3), 205-225. https://doi.org/10.11001/jksww.2021.35.3.205
  8. Du, Z., Deng, S., Bei, Y., Huang, Q., Wang, B., Huang, J., and Yu, G. (2014). Adsorption behavior and mechanism of perfluorinated compounds on various adsorbents-A review, J. Hazard. Mater., 274, 443-454. https://doi.org/10.1016/j.jhazmat.2014.04.038
  9. Freundlich, H. (1907). uber die adsorption in losungen, Z. Phys. Chem., 57(1), 385-470. https://doi.org/10.1515/zpch-1907-5723
  10. Ghodbane, L., Nouri, N., Hamdaoui, O. and Chiha, M. (2008). Kinetic and equilibrium study for the sorption of cadmium(II) ions from aqueous phase by eucalyptus bark, J. Hazard. Mater., 152, 148-158. https://doi.org/10.1016/j.jhazmat.2007.06.079
  11. Harada, K., Xu, F., Ono, K., Iijima, T., and Koizumi, A. (2005). Effects of PFOS and PFOA on L-type Ca2+currents in guinea-pig ventricular myocytes, iochem. Biophys. Res. Commun., 329(2), 487-494. https://doi.org/10.1016/j.bbrc.2005.01.163
  12. Henning, K.D., and Schafer, S. (1993). Impregnated activated carbon for environmental protection, Gas Sep. Purif., 7(4), 235-240. https://doi.org/10.1016/0950-4214(93)80023-P
  13. Hwang, M.J., Hwang, Y.S., and Lee, W. (2015). Phosphate adsorption on metal-impregnated activated carbon, J. Korean Soc. Environ. Eng., 37(11), 642-648. https://doi.org/10.4491/KSEE.2015.37.11.642
  14. Irving, H.M.N.H., and Williams, R. (1953). 637. The stability of transition-metal complexes, J. Chem. Soc., 3192-3210.
  15. Kalaruban, M., Loganathan, P., Nguyen, T.V., Nur, T., Johir, M.A.H., Nguyen, T.H., and Vigneswaran, S. (2019). Iron-impregnated granular activated carbon for arsenic removal: application to practical column filters, J. Environ. Manage., 239, 235-243. https://doi.org/10.1016/j.jenvman.2019.03.053
  16. Kim, T., and An, B. (2021). Effect of hydrogen ion presence in adsorbent and solution to enhance phosphate adsorption, Appl. Sci., 11(6), 2777.
  17. Langmuir, I. (1918). The adsorption of gases on plane surface of glass, mica and platinum, J. Am. Chem. Soc., 40, 1361-1403. https://doi.org/10.1021/ja02242a004
  18. Lee, S., Kim, C.W., and Paik, D.H. (2015). Evaluation of phosphorus adsorption characteristic with surface modified activated carbon, J. Korean Soc. Urban Environ., 15(3), 189-197.
  19. Lim, C., Kim, H., Han, G., Kim, H., Hwang, Y., and Kim, K. (2020). Behavior of perfluorinated compounds in advanced water treatment plant, J. Korean Soc. Water Wastewater, 34(5), 323-334. https://doi.org/10.11001/jksww.2020.34.5.323
  20. Liu, L., Li, D., Li, C., Ji, R., and Tian, X. (2018). Metal nanoparticles by doping carbon nanotubes improved the sorption of perfluorooctanoic acid, J. Hazard. Mater., 351, 206-214. https://doi.org/10.1016/j.jhazmat.2018.03.001
  21. Liu, Y.L., and Sun, M. (2021). Ion exchange removal and resin regeneration to treat per- and polyfluoroalkyl ether acids and other emerging PFAS in drinking water, Water Res. 207, 117781.
  22. Ochoa-Herrera, V., Field, J.A., Luna-Velasco, A., and Sierra-Alvarez, R. (2016). Microbial toxicity and biodegradability of perfluorooctane sulfonate (PFOS) and shorter chain perfluoroalkyl and polyfluoroalkyl substances (PFASs), Environ. Sci.: Process. Impacts, 18(9), 1236-1246. https://doi.org/10.1039/C6EM00366D
  23. Park, J.E., Kim, S,K., Oh, J.K., Ahn, S.Y., Lee, M.N., Cho, C.R., and Kim, K.S. (2012). Study on concentrations and mass flows of perfluorinated compounds (PFCs) in a wastewater treatment plant, J. Korean Soc. Environ. Eng., 34(5), 326-334. https://doi.org/10.4491/KSEE.2012.34.5.326
  24. Park, S.C., and Choi, S.W. (2006). Manufacture of iron, copper and silver ions impregnated activated carbon, J. Korean Soc. Environ. Eng., 28(4), 384-388.
  25. Park, S., Lee, L.S., Medina, V.F., Zull, A., and Waisner, S. (2016). Heat-activated persulfate oxidation of PFOA, 6: 2 fluorotelomer sulfonate, and PFOS under conditions suitable for in-situ groundwater remediation, Chemosphere, 145, 376-383. https://doi.org/10.1016/j.chemosphere.2015.11.097
  26. Park, Y.R., Hong, S.H., Kim, J.H., and Park, J.Y. (2012). Arsenic removal using the surface modified granular activated carbon treated with ferric chloride, J. Korean Soc. Water Wastewater, 26(1), 77-85. https://doi.org/10.11001/jksww.2012.26.1.077
  27. Shin, J., Kang, S., and An, B. (2021). Enhancement of phosphate removal using copper impregnated activated carbon (GAC-Cu), J. Korean Soc. Water Wastewater, 35(6), 455-463. https://doi.org/10.11001/jksww.2021.35.6.455
  28. Son, H.J., Yoom, H.S., Kim, K.A., Ryu, S.W., and Kwon, K.W. (2013). Characteristics of Removal of Perfluorinated Compounds (PFCs) Using Magnetic Ion Exchange Resin (MIEX®) in Water, J. Environ. Sci. Int., 22(8), 1009-1017. https://doi.org/10.5322/JESI.2013.22.8.1009
  29. Son, H., Kim, T., Yoom, H. S., Zhao, D., and An, B. (2020). The adsorption selectivity of short and long per-and polyfluoroalkyl substances (PFASs) from surface water using powder-activated carbon, Water, 12(11), 3287.
  30. Zhao, X., Zhang, A., Zhang, J., Wang, Q., Huang, X., Wu, Y., and Tang, C. (2020). Enhanced selenate removal in aqueous phase by copper-coated activated carbon, Materials, 13(2), 468.