DOI QR코드

DOI QR Code

Evaluation on Large-scale Biowaste Process: Spent Coffee Ground Along with Real Option Approach

  • Junho Cha (Department of Chemical Engineering, Gyeongsang National University) ;
  • Sujin Eom (Department of Chemical Engineering, Gyeongsang National University) ;
  • Subin Lee (Department of Chemical Engineering, Gyeongsang National University) ;
  • Changwon Lee (Department of Chemical Engineering, Gyeongsang National University) ;
  • Soonho Hwangbo (Department of Chemical Engineering, Gyeongsang National University)
  • Received : 2022.12.11
  • Accepted : 2023.01.17
  • Published : 2023.03.31

Abstract

This study aims to introduce a biowaste processing system that uses spent coffee grounds and implement a real options method to evaluate the proposed process. Energy systems based on eco-friendly fuels lack sufficient data, and thus along with conventional approaches, they lack the techno-economic assessment required for great input qualities. On the other hand, real options analysis can estimate the different costs of options, such as continuing or abandoning a project, by considering uncertainties, which can lead to better decision-making. This study investigated the feasibility of a biowaste processing method using spent coffee grounds to produce biofuel and considered three different valuation models, which were the net present value using discounted cash flow, the Black-Scholes and binomial models. The suggested biowaste processing system consumes 200 kg/h of spent coffee grounds. The system utilizes a tilted-slide pyrolysis reactor integrated with a heat exchanger to warm the air, a combustor to generate a primary heat source, and a series of condensers to harness the biofuel. The result of the net present value is South Korean Won (KRW) -225 million, the result of the binomial model is KRW 172 million, and the result of the Black-Scholes model is KRW 1,301 million. These results reveal that a spent coffee ground-related biowaste processing system is worthy of investment from a real options valuation perspective.

Keywords

Acknowledgement

This work was supported by the project (NRF-2020M1A2A2080858) through the National Research Foundation of Korea (NRF) and also supported by the NRF grant funded by the Korea government (MSIT) (No. 2021R1F1A1059919).

References

  1. IPCC, "Climate change 2014 synthesis report," IPCC: Geneva, Switzerland (2014).
  2. H. J. Hwang, J. Y. Mun, and J. Y. Kim, "Economic Benefits of Integration of Supplementary Biopower and Energy Storage Systems in a Solar-Wind Hybrid System," Korean Chem. Eng. Res., 58(3), 381-389 (2020).
  3. J. Park, H. Woo, and J. Lee, "Review: Production of Bio-energy from Marine Algae: Status and Perspectives," Korean Chem. Eng. Res., 46(5), 833-844 (2008).
  4. M. Kamil, K. M. Ramadan, A. G. Olabi, E. I. Al-Ali, X. Ma, and O. I. Awad, "Economic, technical, and environmental viability of biodiesel blends derived from coffee waste," Renew. Energy, 147, 1880-1894 (2020). https://doi.org/10.1016/j.renene.2019.09.147
  5. 'Ministry of Environment'. https://www.me.go.kr/home/web/board/read.do?menuId=286&boardId=1513530&boardMasterId=1 (accessed Nov. 03, 2022).
  6. N. Kondamudi, S. K. Mohapatra, and M. Misra, "Spent coffee grounds as a versatile source of green energy," J. Agric. Food Chem., 56(24), 11757-11760 (2008). https://doi.org/10.1021/jf802487s
  7. J. P. Bok, Y. S. Choi, S. K. Choi, and Y. W. Jeong, "Fast pyrolysis of Douglas fir by using tilted-slide reactor and characteristics of biocrude-oil fractions," Renew. Energy, 65, 7-13 (2014). https://doi.org/10.1016/j.renene.2013.06.035
  8. Y. S. Choi, S. K. Choi, and Y. W. Jeong, "Development of a tilted-slide reactor for the fast pyrolysis of biomass," Environ. Prog. Sustain. Energy, 33(4), 1405-1410 (2014). https://doi.org/10.1002/ep.11888
  9. Y. S. Choi, S. K. Choi, S. J. Kim, Y. W. Jeong, R. Soysa, and T. Rahman, "Fast pyrolysis of coffee ground in a tilted-slide reactor and characteristics of biocrude oil," Environ. Prog. Sustain. Energy, 36(3), 655-661 (2017). https://doi.org/10.1002/ep.12585
  10. E. S. Kim, Y. J. Choi, J. H. Lee, J. S. Park, and C. H. Kim, "A Study on Korean Technology Commercialization Model," Korea Institute of Science and Technology Information (2017).
  11. V. K. Jolly, "Commercializing new technologies: getting from mind to market," Harv. Bus. Press (1997).
  12. C. Kang, S. J. Hong, and S. H. Im, "Economic analysis of inspection and evaluation technology to improve safety of hydrogen bus fuel supply device and driving system," Int. J. Sustain. Transport., 360-361 (2022).
  13. I. Yu, "Optimal choice of economic evaluation method for engineering projects," Korean Manage. Rev., 392-403 (2014).
  14. C. Kahraman, E. Tolga, and Z. Ulukan, "Justification of manufacturing technologies using fuzzy benefit/cost ratio analysis," Int. J. Prod. Econ., 66(1), 45-52 (2000). https://doi.org/10.1016/S0925-5273(99)00103-6
  15. A. Gallo, "A refresher on net present value," Harv. Bus. Rev., 19 (2014).
  16. L. Phalippou, "The hazards of using IRR to measure performance: The case of private equity," Available at SSRN 1111796 (2008).
  17. H. S. Kim, "An Exploratory Study on The Financial Feasibility Study of Waterfront Tourism Resource Activation Project in Rural Community Corporation," Korean Journal of Hospitality Administration, 26(1), 147-155 (2017). https://doi.org/10.24992/KJHT.2017.01.26.01.147.
  18. H. Choi, "A Case Study on Investment Risk Management Using Real Option Approach," Korean Business Education Review, 28(3), 371-391 (2013).
  19. K. T. Yeo and F. Qiu, "The value of management flexibility-a real option approach to investment evaluation," Int. J. Proj. Manage., 21(4), 243-250 (2003). https://doi.org/10.1016/S0263-7863(02)00025-X
  20. S. I. Mussatto, L. M. Carneiro, J. P. A. Silva, I. C. Roberto, and J. A. Teixeira, "A study on chemical constituents and sugars extraction from spent coffee grounds," Carbohydr. Polym., 83(2), 368-374 (2011). https://doi.org/10.1016/j.carbpol.2010.07.063
  21. J. Simoes, P. Madureira, F. M. Nunes, M. do Rosario Domingues, M. Vilanova, and M. A. Coimbra, "Immunostimulatory properties of coffee mannans," Mol. Nutr. Food. Res., 53(8), 103-1043 (2009). https://doi.org/10.1002/mnfr.200800385
  22. D. R. Vardon et al., "Complete utilization of spent coffee grounds to produce biodiesel, bio-oil, and biochar," ACS Sustain. Chem. Eng., 1(10), 1286-1294 (2013). https://doi.org/10.1021/sc400145w
  23. Y. Kwon, "CFD modeling of the fast pyrolysis of coffee grounds in a tilted-slide reactor for bio-crude oil production," Daejeon (2019).
  24. D.-H. Yang, J.-S. Lee, Nam Chan-Gi, G.-J. Park, and M.-J. Kwak, "Project Evaluation using Real Option: Evidence from IT venture firm," Korea Business Review, 10(1), 241-258 (2006).
  25. W.-C. Yun, "Economic evaluation of energy-related business using real option pricing method," WORKING PAPER, 1-162 (2001).
  26. R. Bosri, "Evaluation of Managerial Techniques: NPV and IRR," UITS Journal, 5(1), 48-57 (2016).
  27. J. Lee, "Business valuation," Seoul: newjeanbook (2007).
  28. A. Farber, R. L. Gillet, and A. Szafarz, "A General Formula for the WACC," Int. J. Bus., 11(2) (2006).
  29. 'Investopedia'. https://www.investopedia.com/terms/w/wacc.asp (accessed Nov. 08, 2022).
  30. D. Park, S.-H. Jeong, Y.-J. Shon, J.-H. Kim, and J.-J. Kim, "A Study on Valuation and Investment Timing in Real Estate Development Project by Using a Binomial Option Model - Focusing on Office Building Development Projects-," Journal of the Architectural Institute of Korea Planning & Design, 26(11), 107-116 (2010).
  31. G.-S. Kim, "Review of Real Options Analysis for Renewable Energy Projects," Korea Journal of Construction Engineering and Management, 18(2), 91 (2017).
  32. M. Amram and N. Kulatilaka, "Real options: Managing strategic investment in an uncertain world," OUP Catalogue (1998).
  33. P. Kodukula and C. Papudesu, "Project valuation using real options: a practitioner's guide.," J. Ross Publishing (2006).
  34. J. C. Cox, S. A. Ross, and M. Rubinstein, "Option pricing: A simplified approach," J. Financ. Econ., 7(3), 229-263 (1979). https://doi.org/10.1016/0304-405X(79)90015-1
  35. L. E. Brandao and J. S. Dyer, "Decision analysis and real options: A discrete time approach to real option valuation," Ann. Oper. Res., 135(1), 21-39 (2005). https://doi.org/10.1007/s10479-005-6233-9
  36. 'The Economic Times'. https://economictimes.indiatimes.com/definition/black-scholes-model (accessed Nov. 3, 2022).
  37. S. Kim, "Study on the economic valuation of investment overseas biomass pellet project using real option pricing model," Seoul (2012).
  38. H. Lee, H. Lee, H. Choi, and J. Lee, "Performance comparison between Black-Sholes equation and various Neural Network techniques for option pricing," The Korean Operations Research and Management Science Society, 725-728 (2004).
  39. B. Choe, "Various Derivations of the Black-Scholes Formula," Institute of Economics Research, 51(2), 289-366 (2012).
  40. 'UK Parliament'. https://publications.parliament.uk/pa/ld200304/ldselect/ldsctech/126/12620.htm (accessed Nov. 20, 2022).
  41. 'National Tax Service'. https://www.nts.go.kr/nts/cm/cntnts/cntntsView.do?mi=2372&cntntsId=7746 (accessed Nov. 08, 2022).
  42. E. Vartiainen et al., "True cost of solar hydrogen," Solar RRL, 6(5), 2100487 (2022).
  43. 'KISLINE'. https://www.kisline.com/cm/CM0100M00GE00.nice;jsessionid=o4Tokz3Q0RfUZdgovC7fduhz.green02 (accessed Nov. 08, 2022).
  44. 'Inews24'. https://www.inews24.com/view/1184078 (accessed Nov. 20, 2022).
  45. 'NESTE'. https://www.neste.com/investors/market-data/biodiesel-prices-sme-fame#299a67fc (accessed Nov. 08, 2022).
  46. 'Woori Bank'. https://spot.wooribank.com/pot/Dream?withyou=FXXRT0016(accessed Nov. 08, 2022).
  47. 'KOSIS'. https://kosis.kr/statisticsList/statisticsListIndex.do?vwcd=MT_ZTITLE&menuId=M_01_01# (accessed Nov. 08, 2022).
  48. 'e-Country indicators'. https://www.index.go.kr/potal/main/EachDtlPageDetail.do?idx_cd=1073 (accessed Nov. 08, 2022).
  49. 'Yonhap News Agency'. https://m.yna.co.kr/view/AKR20221013108600003 (accessed Nov. 08, 2022).