DOI QR코드

DOI QR Code

저급석탄과 폐식용유를 활용한 난방장치의 환경성 평가 - 몽골 울란바타르시 대기질 개선 측면-

Environmental Evaluation of Heating Devices Using Low Grade Coal and Waste Cooking Oil - Aspects of Improving Air Quality in Ulaanbaatar, Mongolia -

  • 이형돈 (한국산업기술시험원 환경기술본부 수소물융합기술센터) ;
  • 윤혁진 (플린트랩) ;
  • 조성환 (유니체스트)
  • 투고 : 2022.10.28
  • 심사 : 2022.12.21
  • 발행 : 2023.03.31

초록

몽골은 전 세계에서 대기오염문제가 매우 심각한 나라 중 하나이다. 그 원인으로는 몽골 울란바타르시 내 게르촌에서 사용되는 저급연료의 난방연소 때문이다. 본 연구에서는, 몽골 울란바타르시 게르촌에서 사용되고 있는 저급연료 및 몽골 폐식용유의 연료품질을 분석하였으며, 전통난로와 시작품 연소난방장치의 연소테스트를 통해 환경성을 평가하였다. 또한 인체위험도 분석을 통해 난방장치의 대체효과를 평가하였다. 연료특성분석 결과, 몽골석탄 중 조개탄은 회분, N, S 함량이 높은 이유로 환경성이 상대적으로 안좋은 것으로 분석되었다. 또한 3종의 석탄에 비해 폐식용유를 연소하였을 때, 대기질 개선효과가 높은것으로 나타났다. 몽골 전통난로를 시작품난로(폐식용유 사용)로 교체할 경우, 몽골 울란바타르시의 대기환경문제를 개선할 수 있는 효과가 있을 것으로 판단된다.

Mongolia is experiencing some of the world's most serious air pollution problems. The air pollution is especially severe during the winter when raw coal and low-grade fuels are used to heat homes in Ger villages. The impact of this pollution has created significant health and socioeconomic challenges for the country. In order to mitigate this air pollution, this study analyzed the fuel quality of the low-grade fuels and Mongolian waste cooking oils used in Ulaanbaatar, Mongolia. Then the environmental characteristics of traditional stove combustion and a prototype combustion heating device were compared and analyzed. In addition, the effect of replacing the heating devices was evaluated by analyzing their risks to humans. Analysis of the fuel characteristics showed that briquettes had relatively low environmental properties as a result of their high ash, N and S content. Also, after analyzing the combustion characteristics, it was found that the air quality improvement effect was higher when waste cooking oil was burned compared to the three types of coal that were analyzed. Finally, this study evaluated the impact of replacing the Mongolia traditional stove with a prototype stove that uses waste cooking oil. The results of this study are expected to help to mitigate the air quality problems currently observed in Ulaanbaatar, Mongolia.

키워드

과제정보

본 연구는 산업통상자원부 한국산업기술평가관리원의 산업기술혁신사업 중 디자인혁신기술개발사업에 의해 진행되었습니다.

참고문헌

  1. Badarch, J., Harding, J., Dickinson-Craig, E., Azen, C., Ong, H., Hunter, S., Pannaraj, P. S., Szepesi, B., Sereenendorj, T., Davaa, S., Ochir, C., Warburton, D., and Readhead, C., "Winter Air Pollution from Domestic Coal Fired Heating in Ulaanbaatar, Mongolia, Is Strongly Associated with a Major Seasonal Cyclic Decrease in Successful Fecundity," Int. J. Environ. Res. Public Health, 18(5), 2750-2760 (2021). https://doi.org/10.3390/ijerph18052750
  2. Barabad, M. L. M., Jung, W. S., Versoza, M. E., Kim, M. J., Ko, S. W., Park, D. S., and Lee, K. Y., "Emission Characteristics of Particulate Matter, Volatile Organic Compounds, and Trace Elements from the Combustion of Coals in Mongolia," Int. J. Environ. Res. Public Health, 15(8), 1706 (2018).
  3. Shannon, C., Kaufmann, R. B., Edwards, R., and Smith. K. R., "Impact of Improved Stoves on Indoor Air Quality in Ulaanbaatar, Mongolia," Energy Sector Management Assistance Program(ESMAP) Report 313/05. Washington DC. (2005).
  4. Baris, E., Rivera, S., Boehmova, Z., and Constant, Z., "Indoor Air Pollution in Cold Climates: The Cases of Mongolia and China," Knowledge exchange series, No. 8. World Bank, Washington, DC. (Dec. 2006).
  5. Soyol-Erdene, T. O., Ganbat, G., and Baldorj, B.,"Urban Air Quality Studies in Mongolia: Pollution Characteristics and Future Research Needs," Aerosol Air Qual. Res., 21(12), 210163, (2021).
  6. Jun, S. M., "Is the Raw Coal Ban a Silver Bullet to Solving Air Pollution in Mongolia?: A Study of the Mongolian Government's Air Pollution Reduction Policies and Recommendations in the Context of COVID-19," J. Public Int. Aff., (2021).
  7. Baljmaa, T., "Ulaanbaatar stocked up on 60,000 tons coal briquette for upcoming winter,"MONTSAME, (Aug. 2020). https://montsame.mn/en/read/235035
  8. Bayartsogt, K., "Mongolia's new 'cleaner' fuel linked to deaths, illness,"Mail & Guardian, (Nov. 2019). https://phys.org/news/2019-11-mongolia-cleaner-fuel-linked-deaths.html
  9. Erdenejargal, E.,"Production of refined coal briquette to be intensified,"(July, 2022). https://montsame.mn/en/read/301311
  10. Bennett, D. H., McKone, T. E., Evans, J. S., Nazaroff, W. W., Margni, M. D., Jolliet, and Smith, K. R.,"Peer Reviewed: Defining Intake Fraction," Environ. Sci. Technol., 36(9), 206A-211A (2002). https://doi.org/10.1021/es0222770
  11. Lamancusa, C., Parvez, F., and Wagstrom, K., "Spatially resolved intake fraction estimates for primary and secondary particulate matter in the United States," Atmos. Environ., 150(2), 229-237 (2017). https://doi.org/10.1016/j.atmosenv.2016.11.010
  12. Holnicki, K., Nahorski, Z., and Kaluszko, A., "Intake Fraction (iF) Assessment in an Urban Area," IFAC-PapersOnline, 51(5), 79-84 (2018). https://doi.org/10.1016/j.ifacol.2018.06.214
  13. Apte, J. S., Bombrun, E., Marshall, J. D., and Nazaroff, W. W., "Global Intraurban Intake Fractions for Primary Air Pollutants from Vehicles and Other Distributed Sources," Environ. Sci. Technol., 46(6), 3415-3423 (2012). https://doi.org/10.1021/es204021h
  14. Marshall, J. D., Teoh, S. K., and Nazaroff, W. W.,"Intake fraction of nonreactive vehicle emissions in US urban areas," Atmos. Environ., 39(7), 1363-1371 (2005). https://doi.org/10.1016/j.atmosenv.2004.11.008
  15. Holnicki, P., Kaluszko, A., Nahorski, Z., and Tainio, M., "Intra-urban variability of the intake fraction from multiple emission sources," Atmos. Pollut. Res., 9(6), 1184-1193 (2018). https://doi.org/10.1016/j.apr.2018.05.003
  16. Luo, Z., Lia, Y., and Nazaroff, W. W., "Intake fraction of nonreactive motor vehicle exhaust in Hong Kong," Atmos. Environ., 44(15), 1913-1918 (2010).  https://doi.org/10.1016/j.atmosenv.2010.02.016