DOI QR코드

DOI QR Code

과분지 폴리글리세롤(HPG) 강화를 통해 기계적 물성이 향상된 새로운 천연 고분자 기반 자성 하이드로젤의 제조

Preparation of Novel Natural Polymer-based Magnetic Hydrogels Reinforced with Hyperbranched Polyglycerol (HPG) Responsible for Enhanced Mechanical Properties

  • 장은혜 (부산대학교 응용화학공학부) ;
  • 장지수 (부산대학교 화공생명.환경공학부 화공생명공학전공) ;
  • 권세현 (부산대학교 화공생명.환경공학부 화공생명공학전공) ;
  • 박정현 (부산대학교 화공생명.환경공학부 화공생명공학전공) ;
  • 정유정 (부산대학교 응용화학공학부) ;
  • 정성욱 (부산대학교 응용화학공학부)
  • Eun-Hye Jang (School of Chemical Engineering, Pusan National University) ;
  • Jisu Jang (School of Chemical & Biomolecular Engineering, Pusan National University) ;
  • Sehyun Kwon (School of Chemical & Biomolecular Engineering, Pusan National University) ;
  • Jeon-Hyun Park (School of Chemical & Biomolecular Engineering, Pusan National University) ;
  • Yujeong Jeong (School of Chemical Engineering, Pusan National University) ;
  • Sungwook Chung (School of Chemical Engineering, Pusan National University)
  • 투고 : 2022.11.28
  • 심사 : 2023.01.16
  • 발행 : 2023.03.31

초록

천연 고분자 이중 네트워크를 기반으로 하는 하이드로젤은 뛰어난 생체 적합성, 낮은 세포 독성, 높은 함수율을 가져 다양한 의학 분야 재료로서 우수한 성능을 가지며 생체 조직 내 표적 약물 전달 시스템에의 응용에도 많은 주목을 받고 있지만 상대적으로 약한 기계적 물성에 의한 한계를 가진다. 본 연구에서는 천연 고분자 산화 알지네이트(alginate di-aldehyde, ADA)와 젤라틴(gelatin)이 형성하는 이중 네트워크 기반의 하이드로젤을 합성하였으며 하이드로젤 내부의 기능기와 수소 결합을 할 수 있는 다량의 수산기(-OH) 기능기를 가지는 과분지 고분자(hyperbranched polyglycerol, HPG)를 0~25%의 범위로 조절하여 첨가하여 최종적으로 기계적 물성이 향상된 천연 고분자 기반 하이드로젤을 합성하였다. 또한, 자철석 나노 입자(Fe3O4 nanoparticles (NPs))를 하이드로젤 내부에 in-situ 방법으로 합성하여 자성이 부여된 천연고분자 하이드로젤의 제조 및 특성 분석을 진행하였다. 결과적으로 Fe3O4 NPs를 도입한 15% HPG 함량의 하이드로젤은 3.8 emu g-1의 포화자화 값을 가지는 초상자성을 보였고, 변형률 67.4%에서 최대 압축 강도 1.1 MPa으로 높은 기계적 물성을 가졌다. 향상된 기계적 물성을 가지는 천연 고분자 기반의 초상자성 하이드로젤은 약물 전달 시스템 및 생체 재료에 매우 중요한 잠재적 용도가 있을 것으로 사료된다.

Hydrogels that are made of natural polymer-based double networks have excellent biocompatibility, low cytotoxicity, and high water content, assuring that the material has the properties required for a variety of biomedical applications. However, hydrogels also have limitations due to their relatively weak mechanical properties. In this study, hydrogels based on an alginate di-aldehyde (ADA) and gelatin (Gel) double network that is reinforced with additional hydrogen bonds formed between the hydroxyl (-OH) groups of the hyperbranched polymer (HPG) and the functional groups present inside of the hydrogels were successfully synthesized. The enhanced mechanical properties of these synthesized hydrogels were evaluated by varying the amount of HPG added during the hydrogel synthesis from 0 to 25%. In addition, magnetite nanoparticles (Fe3O4 NPs) were synthesized within the hydrogels and the structures and the magnetic properties of the hydrogels were also characterized. The hydrogels that contained 15% HPG and Fe3O4 NPs exhibited superparamagnetic behaviors with a saturation magnetization value of 3.8 emu g-1. These particular hydrogels also had strengthened mechanical properties with a maximum compressive stress of 1.1 MPa at a strain of 67.4%. Magnetic hydrogels made with natural polymer-based double networks provide improved mechanical properties and have a significant potential for drug delivery and biomaterial application.

키워드

과제정보

이 논문은 부산대학교 기본연구지원사업(2년)의 지원을 받아 연구되었다.

참고문헌

  1. Xing, W., Ghahfarokhi, A. J., Xie, C., Naghibi, S., Campbell, J. A., and Tang, Y. "Mechanical Properties of a Supramolecular Nanocomposite Hydrogel Containing Hydroxyl Groups Enriched Hyper-Branched Polymers," Polymers, 13(5), 805 (2021).
  2. 송수창, 조정교, 전창주, "하이드로젤을 이용한 약물전달 기술," News & Information for Chemical Engineers, 28(2), 171-177 (2010). https://www.cheric.org/research/tech/periodicals/view.php?seq=820146
  3. Jahanban-Esfahlan, R., Derakhshankhah, H., Haghshenas, B., Massoumi, B., Abbasian, M., and Jaymand, M., "A bio-inspired magnetic natural hydrogel containing gelatin and alginate as a drug delivery system for cancer chemotherapy," Int. J. Biol. Macromol., 156, 438-445 (2020). https://doi.org/10.1016/j.ijbiomac.2020.04.074
  4. Huang, X., Zhang, Y. X., Li, F., Zhang, J., Dai, Y. H., Shi, M. Q., and Zhao, Y. X., "Highly efficient alginate-based macromolecular photoinitiator for crosslinking and toughening gelatin hydrogels," J. Polym. Sci., 58(10), 1439-1449 (2020). https://doi.org/10.1002/pol.20200138
  5. Hu, X. S., Liang, R., Li, J., Liu, Z. P., and Sun, G. X., "Mechanically strong hydrogels achieved by designing homogeneous network structure," Mater. Des., 163, 107547 (2019).
  6. Dehbari, N., Tavakoli, J., Khatrao, S. S., and Tang, Y., "In situ polymerized hyperbranched polymer reinforced poly (acrylic acid) hydrogels," Mater. Chem. Front., 1(10), 1995-2004 (2017). https://doi.org/10.1039/C7QM00028F
  7. Mathew, M., Rad, M., Mata, J., Mahmodi, H., Kabakova, I., Raston, C., Tang, Y., Tipper, J., and Tavakoli, J., "Hyperbranched polymers tune the physicochemical, mechanical, and biomedical properties of alginate hydrogels," Mater. Today Chem., 23, 100656 (2022).
  8. Sirivat, A., and Paradee, N., "Facile synthesis of gelatin-coated Fe3O4 nanoparticle: Effect of pH in single-step co-precipitation for cancer drug loading," Mater. Des., 181, 107942 (2019).
  9. Okochi, M., Takano, S., Isaji, Y., Senga, T., Hamaguchi, M., and Honda, H.,"Three-dimensional cell culture array using magnetic force-based cell patterning for analysis of invasive capacity of BALB/3T3/v-src," Lab Chip., 9(23), 3378-3384 (2009). https://doi.org/10.1039/b909304d
  10. Shi, Q., Liu, H., Tang, D. D., Li, Y. H., Li, X. J., and Xu, F., "Bioactuators based on stimulus-responsive hydrogels and their emerging biomedical applications," NPG Asia Mater., 11, 64 (2019).
  11. Sunder, A., Hanselmann, R., Frey, H., and Mulhaupt, R., "Controlled synthesis of hyperbranched polyglycerols by ring-opening multibranching polymerization," Macromolecules, 32(13), 4240-4246 (1999). https://doi.org/10.1021/ma990090w
  12. Resmi, R., Parvathy, J., John, A., and Joseph, R., "Injectable self-crosslinking hydrogels for meniscal repair: A study with oxidized alginate and gelatin," Carbohydr. Polym., 234, 115902 (2020).
  13. Holter, D., Burgath, A., and Frey, H., "Degree of branching in hyperbranched polymers," Acta Polym., 48(1-2), 30-35 (1997). https://doi.org/10.1002/actp.1997.010480105
  14. Sarker, B., Zehnder, T., Rath, S. N., Horch, R. E., Kneser, U., Detsch, R., and Boccaccini, A. R., "Oxidized Alginate-Gelatin Hydrogel: A Favorable Matrix for Growth and Osteogenic Differentiation of Adipose-Derived Stem Cells in 3D," ACS Biomater. Sci. Eng., 3(8), 1730-1737 (2017). https://doi.org/10.1021/acsbiomaterials.7b00188
  15. Sarker, B., Singh, R., Silva, R., Roether, J. A., Kaschta, J., Detsch, R., Schubert, D. W., Cicha, I., and Boccaccini, A. R., "Evaluation of Fibroblasts Adhesion and Proliferation on Alginate-Gelatin Crosslinked Hydrogel," PLoS One, 9(9), e107952 (2014).
  16. Gomez, C. G., Rinaudo, M., and Villar, M. A., "Oxidation of sodium alginate and characterization of the oxidized derivatives," Carbohydr. Polym., 67(3), 296-304 (2007). https://doi.org/10.1016/j.carbpol.2006.05.025
  17. Zheng, S., Shin, J. Y., Song, S. Y., Yu, S. J., Suh, H., and Kim, I., "Hexafunctional Poly(propylene glycol) Based Hydrogels for the Removal of Heavy Metal Ions," J. Appl. Polym. Sci., 131(16), 40610 (2014).
  18. Ribeiro, M., Boudoukhani, M., Belmonte-Reche, E., Genicio, N., Sillankorva, S., Gallo, J., Rodriguez-Abreu, C., Moulai-Mostefa, N., and Banobre-Lopez, M., "Xanthan-Fe3O4 Nanoparticle Composite Hydrogels for Non-Invasive Magnetic Resonance Imaging and Magnetically Assisted Drug Delivery," ACS Appl. Nano Mater., 4(8), 7712-7729 (2021). https://doi.org/10.1021/acsanm.1c00932
  19. Si, S., Kotal, A., Mandal, T. K., Giri, S., Nakamura, H., and Kohara, T., "Size-controlled synthesis of magnetite nanoparticles in the presence of polyelectrolytes," Chem. Mater., 16(18), 3489-3496 (2004). https://doi.org/10.1021/cm049205n
  20. Lee, J., Isobe, T., and Senna, M., "Preparation of ultrafine Fe3O4 particles by precipitation in the presence of PVA at high pH," J. Colloid Interface Sci., 177(2), 490-494 (1996). https://doi.org/10.1006/jcis.1996.0062
  21. Cullity, B. D., "Elements of X-ray Diffraction," Addison-Wesley (1956). Publishing Company. https://books.google.co.kr/books?id=XJVCgGFTODMC
  22. Sivudu, K. S., and Rhee, K. Y., "Preparation and characterization of pH-responsive hydrogel magnetite nanocomposite," Colloids Surf. A., 349(1-3), 29-34 (2009). https://doi.org/10.1016/j.colsurfa.2009.07.048
  23. Wang, H. C., Chen, X. Q., Wen, Y. S., Li, D. Z., Sun, X. Y., Liu, Z. W., Yan, H. Q., and Lin, Q., "A Study on the Correlation between the Oxidation Degree of Oxidized Sodium Alginate on Its Degradability and Gelation," Polymers, 14(9), 1679 (2022).
  24. Shen, Y. Y., He, G. J., Guo, Y. S., Xie, H. J., and Fang, W. J., "Modified Hyperbranched Polyglycerol as Dispersant for Size Control and Stabilization of Gold Nanoparticles in Hydrocarbons," Nanoscale Res. Lett., 12, 525 (2017).
  25. Pooresmaeil, M., Mansoori, Y., Mirzaeinejad, M., and Khodayari, A., "Efficient Removal of Methylene Blue by Novel Magnetic Hydrogel Nanocomposites of Poly(acrylic acid)," Adv. Polym. Technol., 37(1), 262-274 (2018). https://doi.org/10.1002/adv.21665
  26. Kirchberg, S., Rudolph, M., Ziegmann, G., and Peuker, U. A., "Nanocomposites Based on Technical Polymers and Sterically Functionalized Soft Magnetic Magnetite Nanoparticles: Synthesis, Processing, and Characterization," J. Nanomater., 2012, 670531 (2012).
  27. Xu, J. H., Wang, P., Zou, Y. J., Zhang, S., Huang, C. X., Liu, L., Yu, J., and Fan, Y. M., "One-Step Preparation of Fe3O4/Nanochitin Magnetic Hydrogels with Remolding Ability by Ammonia Vapor Diffusion Gelation for Osteosarcoma Therapy," Biomacromolecules, 23(3), 1314-1325 (2022). https://doi.org/10.1021/acs.biomac.1c01550
  28. Singh, A. K., Srivastava, O. N., and Singh, K., "Shape and Size-Dependent Magnetic Properties of Fe3O4 Nanoparticles Synthesized Using Piperidine," Nanoscale Res. Lett., 12, 298 (2017).
  29. Li, B. Q., Jia, D. C., Zhou, Y., Hu, Q. L., and Cai, W., "In situ hybridization to chitosan/magnetite nanocomposite induced by the magnetic field," J. Magn. Magn. Mater., 306(2), 223-227 (2006). https://doi.org/10.1016/j.jmmm.2006.01.250
  30. Bertolucci, E., Galletti, A. M. R., Antonetti, C., Piccinelli, F., Marracci, M., Tellini, B., and Visone, C., "Chemical and Magnetic Properties Characterization of Magnetic Nanoparticles," 2015 Ieee International Instrumentation and Measurement Technology Conference (I2MTC), 1492-1496 (2015).
  31. Joshi, R., Singh, B. P., and Ningthoujam, R. S., "Confirmation of highly stable 10 nm sized Fe3O4 nanoparticle formation at room temperature and understanding of heat-generation under AC magnetic fields for potential application in hyperthermia," AIP Adv., 10(10), 105033 (2020).
  32. Patil, R. M., Shete, P. B., Thorat, N. D., Otari, S. V., Barick, K. C., Prasad, A., Ningthoujam, R. S., Tiwale, B. M., and Pawar, S. H., "Superparamagnetic iron oxide/chitosan core/shells for hyperthermia application: Improved colloidal stability and biocompatibility," J. Magn. Magn. Mater., 355, 22-30 (2014). https://doi.org/10.1016/j.jmmm.2013.11.033
  33. Chomoucka, J., Drbohlavova, J., Huska, D., Adam, V., Kizek, R., and Hubalek, J., "Magnetic nanoparticles and targeted drug delivering," Pharmacol. Res., 62(2), 144-149 (2010). https://doi.org/10.1016/j.phrs.2010.01.014
  34. Medeiros, S. F., Santos, A. M., Fessi, H., and Elaissari, A., "Stimuli-responsive magnetic particles for biomedical applications," Int. J. Pharm., 403(1-2), 139-161 (2011). https://doi.org/10.1016/j.ijpharm.2010.10.011
  35. Xu, X. W., Jerca, F. A., Van Hecke, K., Jerca, V. V., and Hoogenboom, R., "High compression strength single network hydrogels with pillar[5]arene junction points," Mater. Horiz., 7(2), 566-573 (2020). https://doi.org/10.1039/C9MH01401B
  36. Wang, K. Y., Jin, X. Y., Ma, Y. H., Cai, W. J., Xiao, W. Y., Li, Z. W., Qi, X., and Ding, J., "Injectable stress relaxation gelatin-based hydrogels with positive surface charge for adsorption of aggrecan and facile cartilage tissue regeneration," J. Nanobiotechnology, 19(1), 214 (2021).
  37. Jing, Y. D., Mahmud, S., Wu, C. F., Zhang, X. M., Su, S. P., and Zhu, J., "Alginate/gelatin mineralized hydrogel modified by multilayers electrospun membrane of cellulose: Preparation, properties and in-vitro degradation," Polym. Degrad. Stab., 192, 109685 (2021).
  38. Haider, H., Yang, C. H., Zheng, W. J., Yang, J. H., Wang, M. X., Yang, S., Zrinyi, M., Osada, Y., Suo, Z. G., Zhang, Q. Q., Zhou, J. X., and Chen, Y. M., "Exceptionally tough and notch-insensitive magnetic hydrogels," Soft Matter, 11(42), 8253-8261 (2015). https://doi.org/10.1039/C5SM01487E