DOI QR코드

DOI QR Code

A Brief Review on Low-temperature Techniques for Flexible-Dye Sensitized Photovoltaics

유연 염료감응형 광전지 저온공정법 연구개발 동향

  • Jun Hwan Jang (Department of Energy and Materials, Dongguk University) ;
  • Kicheon Yoo (Department of Energy and Materials, Dongguk University) ;
  • Hyeong Cheol Kang (Department of Energy and Materials, Dongguk University) ;
  • Jae-Joon Lee (Department of Energy and Materials, Dongguk University)
  • 장준환 (융합에너지신소재공학과, 동국대학교) ;
  • 유기천 (융합에너지신소재공학과, 동국대학교) ;
  • 강형철 (융합에너지신소재공학과, 동국대학교) ;
  • 이재준 (융합에너지신소재공학과, 동국대학교)
  • Received : 2023.02.02
  • Accepted : 2023.03.15
  • Published : 2023.03.31

Abstract

Flexible dye sensitized photovoltaics (f-DSPVs) based on plastic substrates have attracted significant interest due to their light-weight, flexibility, and compatibility with roll-to-roll processing, as well as their potential application to ubiquitous power sources. However, f-DSPVs exhibit inferior power conversion efficiencies (PCE) compared to conventional DSPVs since the fabrication process must be conducted at a low-temperature (≤ 150℃) to prevent thermal damage of the plastic substrates, which generally results in poor interconnection between the TiO2 nanoparticles. Numerous novel low-temperature manufacturing approaches for flexible photoanode and counter electrode have been developed. In this review, current progress on low temperature strategies for f-DSPVs technology are discussed.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부의 재원으로 한국연구재단의 지원을 받아 기후변화대응기술개발사업(No: NRF-2016M1A2A2940912)을 통해 수행한 과제입니다. 본 연구는 과학기술정보통신부의 지원을 받아 중견연구사업(No: 2021R1A2C2094554)을 통해 수행한 과제입니다.

References

  1. O'regan, B., Gratzel, M., "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films," Nature, 353, 737-740 (1991). https://doi.org/10.1038/353737a0
  2. Nakade, S., Matsuda, M., Kambe, S., Saito, Y., Kitamura, T., Sakata, T., Wada, Y., Mori, H., Yanagida, S., "Dependence of TiO2 nanoparticle preparation methods and annealing temperature on the efficiency of dye-sensitized solar cells," J. Phys. Chem. B, 106, 10004-10010 (2002). https://doi.org/10.1021/jp020051d
  3. Khelashvili, G., Behrens, S., Weidenthaler, C., Vetter, C., Hinsch, A., Kern, R., Skupien, K., Dinjus, E., Bonnemann, H., "Catalytic platinum layers for dye solar cells: a comparative study," Thin Solid Films, 511, 342-348 (2006).
  4. Papageorgiou, N., Maier, W., Gratzel, M., "An iodine/triiodide reduction electrocatalyst for aqueous and organic media," J. Electrochem. Soc., 144, 876-884 (1997). https://doi.org/10.1149/1.1837502
  5. Pichot, F., Pitts, J. R., Gregg, B. A., "Low-temperature sintering of TiO2 colloids: application to flexible dye-sensitized solar cells," Langmuir, 16, 5626-5630 (2000). https://doi.org/10.1021/la000095i
  6. Park, N. G., Kim, K. M., Kang, M. G., Ryu, K. S., Chang, S. H., Shin, Y. J., "Chemical sintering of nanoparticles: a methodology for low-temperature fabrication of dye-sensitized TiO2 films," Adv. Mater., 17, 2349-2353 (2005). https://doi.org/10.1002/adma.200500288
  7. Kim, K., Lee, G.-W., Yoo, K., Kim, D. Y., Kim, J.-K., Park, N.-G., "Improvement of electron transport by low-temperature chemically assisted sintering in dye-sensitized solar cell," J. Photochem. Photobiol. A: Chem., 204 (2-3), 144-147 (2009). https://doi.org/10.1016/j.jphotochem.2009.03.008
  8. Weerasinghe, H., Sirimanne, P., Franks, G., Simon, G., Cheng, Y., "Low temperature chemically sintered nano-crystalline TiO2 electrodes for flexible dye-sensitized solar cells," J. Photochem. Photobiol. A: Chem., 213, 30-36 (2010). https://doi.org/10.1016/j.jphotochem.2010.04.016
  9. Rahman, M. M., Kang, H. C., Yoo, K., Lee, J.-J., "LowTemperature Chemical Sintered TiO2 Photoanodes Based on a Binary Liquid Mixture for Flexible Dye-Sensitized Solar Cells," J. Electrochem. Sci. Technol., 13(4), 453-461 (2022). https://doi.org/10.33961/jecst.2022.00262
  10. Zhang, D., Yoshida, T., Oekermann, T., Furuta, K., Minoura, H., "Room-temperature synthesis of porous nanoparticulate TiO2 films for flexible dye-sensitized solar cells," Adv. Funct. Mater., 16, 1228-1234 (2006). https://doi.org/10.1002/adfm.200500700
  11. Li, Y., Lee, W., Lee, D.-K., Kim, K., Park, N.-G., Ko, M. J., "Pure anatase TiO2 "nanoglue": An inorganic binding agent to improve nanoparticle interconnections in the low-temperature sintering of dye-sensitized solar cells," Appl. Phys. Lett., 98, 103301
  12. Li, Y., Carretero-Palacios, S., Yoo, K., Kim, J. H., JimenezSolano, A., Lee, C.-H., Miguez, H., Ko, M. J., "Maximized performance of dye solar cells on plastic: a combined theoretical and experimental optimization approach," Energy Environ. Sci., 9, 2061-2071 (2016). https://doi.org/10.1039/C6EE00424E
  13. Uchida, S., Tomiha, M., Takizawa, H., Kawaraya, M., "Flexible dye-sensitized solar cells by 28 GHz microwave irradiation," J. Photochem. Photobiol. A: Chem., 164, 93-96 (2004). https://doi.org/10.1016/j.jphotochem.2004.01.026
  14. Kim, H., Auyeung, R., Ollinger, M., Kushto, G., Kafafi, Z., Pique, A., "Laser-sintered mesoporous TiO2 electrodes for dye-sensitized solar cells," Appl. Phys. A, 83, 73-76 (2006). https://doi.org/10.1007/s00339-005-3449-0
  15. Boccaccini, A., Keim, S., Ma, R., Li, Y., Zhitomirsky, I., "Electrophoretic deposition of biomaterials," J. R. Soc. Interface, 7, S581-S613 (2010). https://doi.org/10.1098/rsif.2010.0156.focus
  16. Noorasid, N., Arith, F., Mustafa, A., Azam, M., Mahalingam, S., Chelvanathan, P., Amin, N., "Current advancement of flexible dye sensitized solar cell: A review," Optik, 254, 168089 (2022).
  17. Miyasaka, T., Kijitori, Y., Murakami, T. N., Kimura, M., Uegusa, S., "Efficient nonsintering type dye-sensitized photocells based on electrophoretically deposited TiO2 layers," Chem. Lett., 31, 1250-1251 (2002). https://doi.org/10.1246/cl.2002.1250
  18. Chiu, W.-H., Lee, K.-M., Hsieh, W.-F., "High efficiency flexible dye-sensitized solar cells by multiple electrophoretic depositions," J. Power Sources, 196, 3683-3687
  19. Yum, J.-H., Kim, S.-S., Kim, D.-Y., Sung, Y.-E., "Electrophoretically deposited TiO2 photo-electrodes for use in flexible dye-sensitized solar cells," J. Photochem. Photobiol. A: Chem., 173, 1-6 (2005). https://doi.org/10.1016/j.jphotochem.2004.12.023
  20. Augello, C., Liu, H., "Surface modification of magnesium by functional polymer coatings for neural applications," Surface Modification of Magnesium and its Alloys for Biomedical Applications, Elsevier, 335-353 (2015).
  21. Oekermann, T., Zhang, D., Yoshida, T., Minoura, H., "Electron transport and back reaction in nanocrystalline TiO2 films prepared by hydrothermal crystallization," J. Phys. Chem. B, 108, 2227-2235 (2004). https://doi.org/10.1021/jp034918z
  22. Zhao, X., Lin, H., Li, X., Li, J., "The effect of compression on electron transport and recombination in plastic TiO2 photoanodes," Electrochim. Acta, 56, 6401-6405
  23. Ming, L., Yang, H., Zhang, W., Zeng, X., Xiong, D., Xu, Z., Wang, H., Chen, W., Xu, X., Wang, M., "Selective laser sintering of TiO 2 nanoparticle film on plastic conductive substrate for highly efficient flexible dye-sensitized solar cell application," J. Mater. Chem. A, 2, 4566-4573 (2014). https://doi.org/10.1039/C3TA14210H
  24. Chen, L., Tan, W., Zhang, J., Zhou, X., Zhang, X., Lin, Y., "Fabrication of high performance Pt counter electrodes on conductive plastic substrate for flexible dye-sensitized solar cells," Electrochim. Acta, 55, 3721-3726 (2010). https://doi.org/10.1016/j.electacta.2010.01.108
  25. Fu, N.-Q., Fang, Y.-Y., Duan, Y.-D., Zhou, X.-W., Xiao, X.-R., Lin, Y., "High-performance plastic platinized counter electrode via photoplatinization technique for flexible dye-sensitized solar cells," ACS nano, 6, 9596-9605 (2012). https://doi.org/10.1021/nn302944b
  26. Xiao, Y., Wu, J., Yue, G., Lin, J., Huang, M., Lan, Z., "Low temperature preparation of a high performance Pt/SWCNT counter electrode for flexible dye-sensitized solar cells," Electrochim. Acta, 56, 8545-8550
  27. Garcia-Alonso, D., Zardetto, V., Mackus, A. J., De Rossi, F., Verheijen, M. A., Brown, T. M., Kessels, W. M., Creatore, M., "Atomic Layer Deposition of Highly Transparent Platinum Counter Electrodes for Metal/Polymer Flexible Dye-Sensitized Solar Cells," Adv. Energy Mater., 4, 1300831 (2014).
  28. Yamaguchi, T., Tobe, N.; Matsumoto, D., Nagai, T., Arakawa, H., "Highly efficient plastic-substrate dye-sensitized solar cells with validated conversion efficiency of 7.6%," Sol. Energy Mater. Sol. Cells, 94, 812-816 (2010). https://doi.org/10.1016/j.solmat.2009.12.029
  29. Peng, S., Wu, Y., Zhu, P., Thavasi, V., Mhaisalkar, S. G., Ramakrishna, S., "Facile fabrication of polypyrrole/functionalized multiwalled carbon nanotubes composite as counter electrodes in low-cost dye-sensitized solar cells," J. Photochem. Photobiol. A: Chem., 223, 97-102
  30. Veerappan, G., Kwon, W., Rhee, S.-W., Carbon-nanofiber counter electrodes for quasi-solid state dye-sensitized solar cells. J. Power Sources, 196, 10798-10805
  31. Yin, X., Wu, F., Fu, N., Han, J., Chen, D., Xu, P., He, M., Lin, Y., "Facile synthesis of poly (3, 4-ethylenedioxythiophene) film via solid-state polymerization as high-performance Pt-free counter electrodes for plastic dye-sensitized solar cells," ACS Appl. Mater. Interfaces, 5, 8423-8429 (2013). https://doi.org/10.1021/am401719e
  32. Ke, C.-R., Chang, C.-C., Ting, J.-M., "Modified conducting polymer films having high catalytic activity for use as counter electrodes in rigid and flexible dye-sensitized solar cells," J. Power Sources, 284, 489-496 (2015). https://doi.org/10.1016/j.jpowsour.2015.03.077
  33. Augello, C., Liu, H., "Surface modification of magnesium by functional polymer coatings for neural applications," Surface Modification of Magnesium and its Alloys for Biomedical Applications, Elsevier, 335-353 (2015).
  34. Pringle, J. M., Armel, V., MacFarlane, D. R., "Electrodeposited PEDOT-on-plastic cathodes for dye-sensitized solar cells," Chem. Commun., 46, 5367-5369 (2010). https://doi.org/10.1039/c0cc01400a
  35. Wang, M., Anghel, A. M., Marsan, B., Cevey Ha, N.-L., Pootrakulchote, N., Zakeeruddin, S. M., Gratzel, M., "CoS supersedes Pt as efficient electrocatalyst for triiodide reduction in dye-sensitized solar cells," J. Am. Chem. Soc., 131, 15976-15977 (2009). https://doi.org/10.1021/ja905970y
  36. Yin, X., Xue, Z., Liu, B., "Electrophoretic deposition of Pt nanoparticles on plastic substrates as counter electrode for flexible dye-sensitized solar cells," J. Power Sources, 196, 2422-2426 (2011).  https://doi.org/10.1016/j.jpowsour.2010.09.047