DOI QR코드

DOI QR Code

영주댐 개방에 따른 호내 조류 변동 모의

Modeling of algal fluctuations in the reservoir according to the opening of Yeongju Dam

  • 이동열 (한경대학교 건설환경공학부) ;
  • 김성은 (한경대학교 건설환경공학부) ;
  • 백경오 (한경대학교 건설환경공학부)
  • Lee, Dong Yeol (Department of Civil and Environmental Engineering, Hankyong National University) ;
  • Kim, Seong Eun (Department of Civil and Environmental Engineering, Hankyong National University) ;
  • Baek, Kyong Oh (Department of Civil and Environmental Engineering, Hankyong National University)
  • 투고 : 2022.09.29
  • 심사 : 2023.01.30
  • 발행 : 2023.03.31

초록

기후 변화로 인하여 국내뿐만 아니라 전 세계적으로 녹조류 번무 현상이 잦아지면서 유해 녹조의 독성에 대한 위험성이 최근 대두된 바 있다. 대표적인 유해 조류인 남조류는 수온, 체류시간 및 영양염류 이렇게 3가지 요소의 교집합으로 발생한다고 알려져 있다. 본 연구에서는 내성천 내 영주댐의 완전개방으로 체류시간 감소에 따른 수질 변화 분석을 위해 준3차원 수치모델인 EFDC를 활용하여 수질모의를 수행하였다. 실제 2021년 여름철 영주댐 내 엽록소-a의 농도는 상당하여 과거 조류경보제 기준으로 '조류경보'를 오랜 기간 동안 상회하였다. 반면 댐 수문을 완전 개방한 조건으로 모의를 수행한 결과, 모의기간 동안 엽록소-a 농도가 대부분 '조류경보' 수준 이하로 저감되었다. 내성천의 흐름을 복원하여 체류시간을 감소시키는 것이 영주댐 내 녹조를 즉각적으로 저감시키는 방안임을 확인하였다.

Due to climate change, algal blooms frequently occur not only in Korea but also around the world, and the risk of toxicity of harmful algae has recently been issued. It is known that the representative harmful algae, cyanobacteria, are caused by the intersection of three factors: water temperature, residence time, and nutrients. In this study, water quality simulation was carried out using EFDC, a three-dimensional numerical model, to analyze the variations in water quality due to the decrease of residence time according to the opening of Yeongju Dam in Naeseong-Cheon. In fact, the concentration of chlorophyll-a in Yeongju Dam in the summer of 2021 was significant, exceeding the 'algae warning' for a long time based on the previous algae warning system. On the other hand, as a result of performing the simulation under the condition that the dam gate was completely opened, the concentration of chlorophyll-a was mostly reduced below the 'algae warning' level during the simulation period. It was confirmed that reducing the residence time by restoring the flow of Naeseong-Cheon is a way to immediately reduce algae in Yeongju Dam.

키워드

과제정보

이 논문은 정부의 재원으로 한국연구재단의 지원을 받아 수행된 연구입니다(과제번호: 2016R1D1A1B02012110).

참고문헌

  1. Agence nationale de securite sanitaire de l'alimentation, de l'environnement et du travail (ANSES) (2019). Toxicological reference values: Microcystin-LR. Scientific Edition, 2016-SA-0297, Paris, pp. 28-46.
  2. Ahn, J.M., Kim, J., Park, L.J., Jeon, J., Jong, J., Min, J.H., and Kang, T. (2021). "Predicting Cyanobacterial Harmful Algal Blooms (CyanoHABs) in a regulated river using a Revised EFDC Model." Water, Vol, 13, No. 4, 439.
  3. Bai, H., Chen, Y., Wang, D., Zou, R., Zhang, H., Ye, R., and Sun, Y. (2018). "Developing an EFDC and numerical source-apportionment model for nitrogen and phosphorus contribution analysis in a lake basin." Water, Vol, 10, No. 10, 1315.
  4. Cerco, C.F., and Cole, T.M. (1994). CE-QUAL-ICM: a three-dimensional eutrophication model, version 1.0. User's Guide. US Army Corps of Engineers Waterways Experiments Station, Vicksburg, MS, U.S.
  5. Chen, Y., X, J., Li, Y., and Han, X. (2011). "Decline of sperm quality and testicular function in male mice during chronic low-dose exposure to microcystin-LR." Reproductive Toxicology, Vol. 31, No. 4, pp. 551- 557. https://doi.org/10.1016/j.reprotox.2011.02.006
  6. Choi, H.G., Han, K.Y., and Park, J.H. (2017). "Reproducibility evaluation of stratification using EFDC model in Nakdong River." KSCE Journal of Civil and Environmental Engineering Research, Vol. 37, No. 3, pp. 561-573.
  7. Choi, H.G., Kim, D.I., Na, C.H., and Han, K.Y. (2012). "Assessment of EFDC model for water quality analysis in Nakdong River." Journal of Korea Water Resources Association, Vol. 45, No. 7, pp. 658-696.
  8. Di Toro, D.M., Fitzpatrick, J.J., and Thomann, R.V. (1983). Documentation for water quality analysis simulation program (WASP) and model verification program (MVP). EPA-600/3-81-044, U.S. Environmental Protection Agency, Duluth, MN, U.S.
  9. Fawell, J.K., Mitchell, R.E., Everett, D.J., and Hill, R.E. (1999). "The toxicity of cyanobacterial toxins in the mouse: I microcystin-LR." Human & Experimental Toxicology, Vol. 18, pp. 162-167. https://doi.org/10.1177/096032719901800305
  10. Heinze, R. (1999). "Toxicity of the cyanobacterial toxin microcystin LR to rats after 28 days intake with the drinking water." Environmental Toxicology: An International Journal, Vol. 14, No. 1, pp. 57-60. https://doi.org/10.1002/(SICI)1522-7278(199902)14:1<57::AID-TOX9>3.0.CO;2-J
  11. Jeong, S.G. (2022). Yeongju Dam, accessed 25 September 2022, 
  12. Kim, D., and Shin, C. (2021). "Algal boom characteristics of Yeongsan River based on weir and estuary dam operating conditions using EFDC-NIER Model." Water, Vol. 13, No. 16, 2295.
  13. Kim, J., Lee, T., and Seo, D. (2017). "Algal bloom prediction of the lower Han River, Korea using the EFDC hydrodynamic and water quality model." Ecological Modelling, Vol. 366, pp. 27-36. https://doi.org/10.1016/j.ecolmodel.2017.10.015
  14. K-water (2021). Current status of discharge according to test freshwater from Yeongju Dam.
  15. Lee, D.Y., and Baek, K.O. (2022). "Study of the mitigation of algae in lake Uiam according to the Operation of the Chuncheon Dam and the Soyang Dam." Journal of Civil and Environmental Engineering Research, Vol. 42 No. 2, pp. 171-179.
  16. Liu, Y., Wang, Y., Sheng, H., Dong, F., Zou, R., Zhao, L., and He, B. (2014). "Quantitative evaluation of lake eutrophication responses under alternative water diversion scenarios: A water quality modeling based statistical analysis approach." Science of the Total Environment, Vol. 468, pp. 219-227. https://doi.org/10.1016/j.scitotenv.2013.08.054
  17. Ministry of Environment (ME) (2021). Han River, Nakdong River Water quality prediction modeling complementary study (II-1) report.
  18. Ministry of Land, Transport and Maritime Affairs (MLTM). (2009). Yeongju multi-purpose Dam construction project environmental impact assessment report.
  19. Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., and Veith, T.L. (2007). "Model evaluation guidelines for systematic quantification of accuracy in watershed simulations." Transactions of the ASABE, Vol. 50, No. 3, pp. 885-900. https://doi.org/10.13031/2013.23153
  20. Office of Environmental Health Hazard Assessment (OEHHA) (2012). Toxicological summary and suggested action levels to reduce potential adverse health effects of six cyanotoxins. California Environmental Protection Agency, Sacramento, CA, U.S.
  21. Office of Environmental Health Hazard Assessment (OEHHA) (2021). Recommendation for interim notification levels for saxitoxins, microcystins and cylindrospermopsin, California Environmental Protection Agency, Sacramento, CA, U.S.
  22. Shin, C.M., Kim, D., and Song, Y. (2019). "Analysis of hydraulic characteristics of Yeongsan River and estuary using EFDC model." Journal of Korean Society on Water Environment, Vol. 35, No. 6, pp. 580-588. https://doi.org/10.15681/KSWE.2019.35.6.580
  23. Song, Y., Jeong, Y.H., Shin, C.M., and Kwak, D.H. (2022). "Spatial distribution and comparative evaluation of phosphorus release rate in benthic sediments of an estuary dam." International Journal of Sediment Research, Vol. 37, No. 3, pp. 355-369. https://doi.org/10.1016/j.ijsrc.2021.08.005
  24. Tetra Tech. Inc. (2000). EFDC water quality model.
  25. Tetra Tech. Inc. (2002). Theoretical and Computational Aspects of Sediment and Contaminant Transport in the EFDC Model.
  26. US Environmental Protection Agency (USEPA) (1985). Computer program documentation for the enhanced stream water quality model QUAL2E. EPA/600/3-85/065, U.S. Environmental Protection Agency, Athens, GA, U.S.
  27. US Environmental Protection Agency (USEPA) (2015a). Health effects support document for the cyanobacterial toxin microcystins. EPA- 820R1510, Office of Water, Health and Ecological Criteria Division, Washington, DC.
  28. US Environmental Protection Agency (USEPA) (2015b). Drinking water health advisory for the cyanobacterial microcystin toxins. EPA-820R15100, Office of Water, Health and Ecological Criteria Division, Washington, DC.
  29. Wang, P., Lai, G., and Li, L. (2015). "Predicting the hydrological impacts of the Poyang Lake project using an EFDC model." Journal of Hydrologic Engineering, Vol. 20, No. 12, 05015009.
  30. World Health Organization (WHO) (2015). Management of cyanobacteria in drinking-water supplies: Information for regulators and water suppliers. WHO/FWC/WSH/15.03, Geneva, Switzerland.
  31. World Health Organization (WHO) (2020). Cyanobacterial toxins: microcystins. Background document for development of WHO Guidelines for drinking-water quality and Guidelines for safe recreational water environments. WHO/HEP/ECH/WSH/2020.6, Geneva, Switzerland.
  32. Wu, G., and Xu, Z. (2011). "Prediction of algal blooming using EFDC model: Case study in the Daoxiang Lake." Ecological Modelling, Vol. 222, No. 6, pp. 1245-1252. https://doi.org/10.1016/j.ecolmodel.2010.12.021
  33. Yin, Z., and Seo, D. (2016). "Analysis of optimum grid determination of water quality model with 3-D hydrodynamic model using environmental fluid dynamics code (EFDC)." Environmental Engineering Research, Vol. 21, No. 2, pp. 171-179. https://doi.org/10.4491/eer.2015.137
  34. Zheng, L., Wang, H., Liu, C., Zhang, S., Ding, A., Xie, E., and Wang, S. (2021). "Prediction of harmful algal blooms in large water bodies using the combined EFDC and LSTM models." Journal of Environmental Management, Vol. 295, 113060.