DOI QR코드

DOI QR Code

The Pull-out Behavior of Rock Bolts According to Grout Strength during Rock Bolt Pull-out

록볼트 인발 시 그라우트 강도에 따른 인발 거동

  • Seongmin Jang (Dept. of Railroad Construction and Safety Engineering, Dongyang University) ;
  • Hyuksang Jung (Dept. of Railroad Construction and Safety Engineering, Dongyang University )
  • Received : 2023.02.02
  • Accepted : 2023.03.09
  • Published : 2023.04.01

Abstract

In this paper, through experimental research, the period when rock bolts exert support effects is presented as grout strength and through numerical analysis, the rock bolt pull-out behavior according to ground conditions and strength reduction factors is analyzed. As a result, it is determined that rock bolts exhibit their reinforcing effect at a grout strength of 5 MPa (cured for 18 hours). The influence of the boundary interface strength reduction factor was found to be significant for rock bolt displacement in weak ground conditions, for shear stress between grout and ground in highly elastic ground conditions, and for grout stress in all ground conditions. These findings are expected to contribute to the establishment of specific standards for rock bolt testing and numerical analysis, and to facilitate improved design and implementation of rock bolt reinforcement.

본 논문에서는 시험적 연구를 통해 록볼트가 지보효과를 발휘하는 시기를 그라우트 강도로 제시하고, 수치해석적 연구를 통해 지반조건과 경계면 강도감소계수에 따른 록볼트 인발 거동을 분석한 연구를 다루었다. 그 결과 록볼트는 그라우트 강도 5 MPa(재령 18시간)에서 지보효과를 발휘하였으며, 경계면 강도감소계수의 영향은 록볼트 변위의 경우 연약한 지반일수록, 그라우트- 지반의 전단응력의 경우 지반의 탄성계수가 높을수록, 그라우트 응력의 경우 모든 지반조건에서 영향이 큰 것으로 분석되었다. 이러한 연구결과는 록볼트 인발시험의 구체적인 기준 재정립과 록볼트 수치해석에 도움이 될 것으로 판단된다.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2021R1I1A3056148).

References

  1. 국토교통부 (2014), 터널표준시방서, pp. 37~41. 
  2. 국토교통부 (2016), 도로교 설계기준, pp. 184~190. 
  3. 통계청 (2020), 도로 교량 및 터널 현황조서, pp. 19~24. 
  4. 日本国土交通省 (2016), 土木工事施工管理基準, pp. 171~191 (In Japanese). 
  5. ASTM (2014), Standard Test Method for Rock Bolt Anchor Pull Test, ASTM D4435, pp. 1~6. 
  6. Chang, S. H., Choi, S. W. and Bae, G. J. (2009), A numerical study on the behaviors of a fully grouted rockbolt by considering its grout strength, Korean Aociety of Civil Engineers, Vol. 10, pp. 3700~3703 (In Korean). 
  7. Hyett, A. J., Bawden, W. F. and Reichert, R. D. (1992), The effect of rock mass confinement on the bond strength of fully grouted cable bolts, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 29, Issue 5, pp. 503~524.  https://doi.org/10.1016/0148-9062(92)92634-O
  8. Itoh, J., Park, H. G., Kim, D. W. and Kim, J. K. (2003), Study on rock reinforcement process and the effect of produced strength right after rockbolt installation, Tunnelling Technology, Vol. 5, No 2, pp. 189~198 (In Korean). 
  9. Ivan, P. D., Sebastia, O., Richard J. B., Antonio, L. and Alejandro, J. (2019), Modeling soil-facing interface interaction with continuum element methodology, Frontiers in Built Environment, Vol. 8, pp. 1~21. 
  10. Jang, S. J. (2005), A study on the problem and improvement plan of pull test method and test result judgment on rock bolts usage for tunnel construction, The Korea Institute For Structural Maintenance and Inspection, Vol. 9, No 4, pp. 135~140 (In Korean). 
  11. Jeong, H. S., Yang, H. S. and Kim, B. H. (2004), A study on the validity of 2-dimensional analysis of rock bolt, Tunn Undergr Space, Vol. 14, No. 6, pp. 423~428 (In Korean). 
  12. Kim, C. (2012), Pullout Resistance of the Mixed Type Rock Bolt with Self Expanding End, Master's Thesis, Hanyang University, pp. 1~19. 
  13. Korea National Railway (2012), KR C-12030, pp. 15~20 (In Korean). 
  14. Korea National Railway (2020), KR C-12030, pp. 55~68 (In Korean). 
  15. Ministry of Land, Infrastructure and Transport (2016), A Study on the Amendment of the Tunnel Design Standard, pp. 43~70 (In Korean). 
  16. Ministry of Land, Infrastructure and Transport (2016), KCS 27 30 00, pp. 3~28 (In Korean). 
  17. Mun, T. C. (2009), Characterize of physical properties according to compound condition of grout mortar, Master's Thesis, Chosun University, pp. 15~52. 
  18. Norwegian Tunnelling Society (2012), Constracts in Norwegian Tunnelling, Publication No. 21, pp. 25~29 (In Norwegian). 
  19. Stacho, J. and Sulovska, M. (2021), Impact of shear strength reduction of the soil - geogrid interface to the stability of an embankment, International Society for Soil Mechanics and Geotechnical Engineering, Vol. 6, pp. 1~7.  https://doi.org/10.5593/sgem2021/1.1/s02.028
  20. You, S. K., Shin, H. S., Lee, K. W., Park, J. J., Choi, C. L. and Hong, g. w. (2019), A study on strength reduction factor of pile-soil interface for evaluation of pile pullout resistance by soil condition, Korean Geosynthetics Society, Vol. 18, No. 2, pp. 45~54 (In Korean).