DOI QR코드

DOI QR Code

상수, 공업용수, 및 하천수를 활용한 균일한 실리카 나노입자 합성 및 전기감응형 스마트유체로의 응용

Synthesis of Uniform Silica Nanoparticles using Tap, Industrial, and Stream water and Their Application to Electro-responsive Smart Fluid System

  • 김하영 (한밭대학교 화학생명공학과) ;
  • 제갈석 (한밭대학교 화학생명공학과) ;
  • 이능히 (한밭대학교 화학생명공학과) ;
  • 사민기 (한밭대학교 화학생명공학과) ;
  • 김동현 (한밭대학교 화학생명공학과) ;
  • 김민상 (한밭대학교 화학생명공학과) ;
  • 김지원 (한밭대학교 화학생명공학과) ;
  • 윤창민 (한밭대학교 화학생명공학과)
  • Ha-Yeong Kim (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Suk Jekal (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Neunghi Lee (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Minki Sa (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Dong Hyun Kim (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Min Sang Kim (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Jiwon Kim (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Chang-Min Yoon (Department of Chemical and Biological Engineering, Hanbat National University)
  • 투고 : 2023.02.16
  • 심사 : 2023.03.05
  • 발행 : 2023.03.30

초록

본 연구에서는 증류수를 사용하지 않고 상수, 공업용수 및 하천수를 활용하여 균일한 실리카 나노입자를 성공적으로 제조하는 방법에 대해 제시하였다. 또한, 제조된 실리카 나노입자들은 전기감응형 스마트유체의 분산 물질로 적용하였다. 상세히는, 다양한 종류의 물을 사용하여 500-700nm 사이즈의 실리카 나노입자를 한 번의 실험으로 대량 제조(약 12.0g) 하였으며 증류수를 활용하여 합성한 750nm 사이즈의 실리카 나노입자와 동일한 형태학적 화학적 특성을 가지고 있음을 확인하였다. 다양한 물을 사용하여 제조한 실리카 나노입자의 사이즈는 이온전도도에 따라 변화하였다. 이온전도도가 높으면 높을수록 제조된 실리카 나노입자의 크기가 작아짐을 확인할 수 있었고, 이는 이온들이 실리카 나노입자의 성장을 억제하기 때문이다. 또한, 제조한 실리카 나노입자들을 전기감응형 스마트유체로 응용하였다. 그 결과, 상수, 공업용수 및 하천수를 활용하여 제조한 실리카 나노입자가 증류수를 활용하여 합성한 실리카 나노입자 대비 높은 전단응력을 나타냄을 확인할 수 있었고, 이는 작은 사이즈의 실리카 나노입자가 전기장 하에서 더 강한 사슬 구조를 형성하기 때문이다. 결론적으로, 본 연구를 통해 다양한 물을 증류수와 같이 정제하지 않고 사용하여 실리카 나노입자를 성공적으로 제조할 수 있음을 확인하였고, 해당 입자들이 전기감응형 스마트유체 응용에서 우수한 성능을 나타냄을 확인할 수 있었다.

This study describes the successful synthesize strategy for the silica nanoparticles utilizing various water sources, including tap, industrial, and stream waters without using deionized water. Also, as-synthesized silica nanoparticles are employed as dispersive materials for the electro-responsive smart fluid application. Specifically, homogeneous silica nanoparticles with sizes of 500-700nm are successfully prepared in large scale at once (ca. 12.0 g) with the described experimental method and showing similar structural and chemical characteristics with silica nanoparticles synthesized using the deionized water. The size of silica nanoparticles are varied according to the ion conductivity differences of tap, industrial, stream water, and deionized water. The size of silica nanoparticles decresed with the increased ion conductivity, indicating the ion suppression of growth of silica nanoparticles. Moreover, as-synthesized silica nanoparticles from various water sources of electro-responsive characteristic are investigated by the smart fluid application. The smart fluids containing silica nanoparticles synthesized by tap, industrial, and stream water exhibited higher shear stress compared to the deionized water, owing to the more rigid fibril-like structures formed by the smaller silica nanoparticles. Conclusively, uniform silica nanoparticles from various water sources without any purification are able to successfully prepared without usage of deionized water and resulting silica nanoparticles manifested higher electro-responsive performance.

키워드

과제정보

본 과제(결과물)는 2022년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체 대학 - 협력기반 지역혁신 사업의 결과입니다.(2021RIS-004)

참고문헌

  1. Santos, C. S. C., Gabriel, B., Blanchy, M., Menes, O., Garcia, D., Blanco, M., Arconada, N. and Neto, V., "Industrial Applications of Nanoparticles - A Prospective Overview", Materials Today: Proceedings, 2(1), pp. 456~465.
  2. Pan, H., Qin, M., Meng, W., Cao, Y. and Wang, W., "How Do Proteins Unfold upon Adsorption on Nanoparticle Surfaces?", Langmuir, 28(35), pp. 12779~12787. (2012). https://doi.org/10.1021/la302258k
  3. Jang, Y., Kim, S., Lee, S., Yoon, C.-M., Lee, I. and Jang, J., "Graphene Oxide Wrapped SiO2/TiO2 Hollow Nanoparticles Loaded with Photosensitizer for Photothermal and Photodynamic Combination Therapy", Chemistry - A European Journal, 23(15), pp. 3719~3727. (2017). https://doi.org/10.1002/chem.201605112
  4. Khan, I., Saeed, K. and Khan, I., "Nanoparticles: Properties, applications and toxicities", Arabian Journal of Chemistry, 12(7), pp. 908~931. (2019). https://doi.org/10.1016/j.arabjc.2017.05.011
  5. Mourdikoudis, S., Pallares, R. M. and Thanh, N. T. K., "Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties", Nanoscale, 10(27), pp. 12871~12934. (2018). https://doi.org/10.1039/C8NR02278J
  6. Roco, M. C., "The long view of nanotechnology development: The National Nanotechnology Initiative at 10 years", Journal of Nanoparticle Research, 13(2), pp. 427~445. (2011). https://doi.org/10.1007/s11051-010-0192-z
  7. Mihranyan, A. and Stromme, M., "Solubility of fractal nanoparticles", ScienceDirect, 601(2), pp. 315~319. (2007). https://doi.org/10.1016/j.susc.2006.09.037
  8. Emerich, D. F. and Thanos, C. G., "Nanotechnology and medicine", Expert Opinion on Biological Therapy, 3(4), pp. 655~663. (2003). https://doi.org/10.1517/14712598.3.4.655
  9. Hulla, J. E., Sahu, S. C. and Hayes, A. W., "Nanotechnology: History and future", Human and Experimental Toxicology, 34(12), pp. 1318~1321. (2015). https://doi.org/10.1177/0960327115603588
  10. Yoon, C.-M., Noh, J., Jang, Y. and Jang, J., "Fabrication of a silica/titania hollow nanorod and its electroresponsive activity", RSC Advances, 7(32), pp. 19754~19763. (2017). https://doi.org/10.1039/C7RA01786C
  11. Hou, Z., Cai, H., Li, C., Li, B. and Wang, H., "A phosphorus/silicon/triazine-containing flame retardant towards flame retardancy and mechanical properties of epoxy resin", Journal of Applied Polymer Science, 139(31), p. e52712. (2022).
  12. Singh, L. P., Bhattacharyya, S. K., Kumar, R., Mishra, G., Sharma, U., Singh, G. and Ahalawat, S., "Sol-Gel processing of silica nanoparticles and their applications", Advances in Colloid and Interface Science, 214, pp. 17~37. (2014). https://doi.org/10.1016/j.cis.2014.10.007
  13. Wang, X.-D., Shen, Z.-X., Sang, T., Cheng, X.-B., Li, M.-F., Chen, L.-Y. and Wang, Z.-S., "Preparation of spherical silica particles by Stober process with high concentration of tetra-ethyl-orthosilicate", Journal of Colloid and Interface Science, 341(1), pp. 23~29. (2010). https://doi.org/10.1016/j.jcis.2009.09.018
  14. Kim, J., Kim, M., Cho, S., Yoon, C.-M., Lee, C., Ryu, J. and Jang, J., "Multidimensional Polyaniline/Reduced Graphene Oxide/Silica Nanocomposite for Efficient Supercapacitor Electrodes", ChemNanoMat, 2(3), pp. 236~241. (2016). https://doi.org/10.1002/cnma.201600006
  15. Lazareva, S. V., Shikina, N. V., Tatarova, L. E. and Ismagilov, Z. R., "Synthesis of High-Purity Silica Nanoparticles by Sol-Gel Method", Eurasian Chemico-Technological Journal, 19(4), pp. 295~302. (2017). https://doi.org/10.18321/ectj677
  16. Deroine, M., Le Duigou, A., Corre, Y.-M., Le Gac, P.-Y., Davies, P., Cesar, G. and Bruzaud, S., "Accelerated ageing of polylactide in aqueous environments: Comparative study between distilled water and seawater", Polymer Degradation and Stability, 108, pp. 319~329. (2014). https://doi.org/10.1016/j.polymdegradstab.2014.01.020
  17. Vitiello, G. and Luciani, G., "Photocatalysis: Activity of nanomaterials", Catalysts, 11(5), p. 611. (2021).
  18. Tong, H., Ouyang, S., Bi, Y., Umezawa, N., Oshikiri, M. and Ye, J., "Nano-photocatalytic materials: Possibilities and challenges", Advanced Materials, 24(2), pp. 229~251. (2012). https://doi.org/10.1002/adma.201102752
  19. Saha, S., Samanta, P., Murmu, N. C. and Kuila, T., "A review on the heterostructure nanomaterials for supercapacitor application", Journal of Energy Storage, 17, pp. 181~202. (2018). https://doi.org/10.1016/j.est.2018.03.006
  20. Yoon, C.-M., Lee, G., Noh, J., Lee, C., Cheong, O. J. and Jang, J., "A comparative study on electrorheological property of various N-doped nanomaterials using ammonia plasma treatment", Chemical Communications, 52(26), pp. 4808~4811. (2016). https://doi.org/10.1039/C5CC10201D
  21. Yoon, C.-M., Jang, Y., Noh, J., Kim, J. and Jang, J., "Smart Fluid System Dually Responsive to Light and Electric Fields: An Electrophotorheological Fluid", ACS Nano, 11(10), pp. 9789~9801. (2017). https://doi.org/10.1021/acsnano.7b02894
  22. Liu, Y. D., Park, B. J., Kim, Y. H. and Choi, H. J., "Smart monodisperse polystyrene/polyaniline core - shell structured hybrid microspheres fabricated by a controlled releasing technique and their electroresponsive characteristics", Journal of Materials Chemistry, 21(43), pp. 17396~17402. (2011). https://doi.org/10.1039/c1jm12443a
  23. Lee, S., Yoon, C.-M., Hong, J.-Y. and Jang, J., "Enhanced electrorheological performance of a graphene oxide-wrapped silica rod with a high aspectratio", Journal of Materials Chemistry C, 2(30), pp. 6010~6016. (2014). https://doi.org/10.1039/C4TC00635F
  24. Yoon, C.-M., Jang, Y., Lee, S. and Jang, J., "Dual electric and magnetic responsivity of multilayered magnetiteembedded core/shell silica/titania nanoparticles with outermost silica shell", Journal of Materials Chemistry C, 6(38), pp. 10241~10249. (2018). https://doi.org/10.1039/C8TC03677B
  25. Kuznetsov, N. M., Kovaleva, V. V., Belousov, S. I. and Chvalun, S. N., "Electrorheological fluids: from historical retrospective to recent trends", Materials Today chemistry, 26, p. 101066. (2022).
  26. Halsey, T. C., "Electrorheological Fluids", Science, 258(5083), pp. 761~766. (1992). https://doi.org/10.1126/science.258.5083.761
  27. Kuznetsov, N. M., Kovaleva, V. V., Belousov, S. I. and Chvalun, S. N., "Electrorheological fluids: from historical retrospective to recent trends", Materials Today chemistry, 26, p. 101066. (2022).
  28. Yoon, C.-M., Lee, K., Noh, J., Lee, S. and Jang, J., "Electrorheological performance of multigramscale mesoporous silica particles with different aspect ratios", Journal of Materials Chemistry C, 4(8), pp. 1713~1719. (2016). https://doi.org/10.1039/C5TC04124D
  29. Noh, J., Yoon, C.-M. and Jang, J., "Enhanced electrorheological activity of polyaniline coated mesoporous silica with high aspect ratio", Journal of Colloid and Interface Science, 470, pp. 237~244. (2016). https://doi.org/10.1016/j.jcis.2016.02.061
  30. Noh, J., Hong, S., Yoon, C.-M., Lee, S. and Jang, J., "Dual external fields-responsive polyanilinecoated magnetite/silica nanoparticles for smart fluid applications", Chemical Communications, 53(49), pp. 6645~6648. (2017). https://doi.org/10.1039/C7CC02197F
  31. Yoon, C.-M., Jang, Y., Noh, J., Kim, J., Lee, K. and Jang, J., "Enhanced Electrorheological Performance of Mixed Silica Nanomaterial Geometry", ACS Applied Materials and Interfaces, 9(41), pp. 36358~36367. (2017). https://doi.org/10.1021/acsami.7b08298
  32. Yoon, C.-M., Jang, Y., Noh, J., Kim, J. and Jang, J., "Smart Fluid System Dually Responsive to Light and Electric Fields: An Electrophotorheological Fluid", ACS Nano, 11(10), pp. 9789~9801. (2017). https://doi.org/10.1021/acsnano.7b02894
  33. Yoon, C.-M., Lee, S., Cheong, O. J. and Jang, J., "Enhanced Electroresponse of Alkaline Earth Metal-Doped Silica/Titania Spheres by Synergetic Effect of Dispersion Stability and Dielectric Property", ACS Applied Materials and Interfaces, 7(34), pp. 18977~18984.
  34. Chen, P., Zhao, Z., Zhang, G., Jin, X., Wang, L.-M. and Liu, Y. D., "Silica-based ionogels containing imidazolium ionic liquids and their electrorheological responses at room and elevated temperatures", Materials Today Communications, 28, p. 102532. (2021).
  35. Hong, J.-Y., Choi, M., Kim, C. and Jang, J., "Geometrical study of electrorheological activity with shape-controlled titania-coated silica nanomaterials", Journal of Colloid and Interface Science, 347(2), pp. 177~182. (2010). https://doi.org/10.1016/j.jcis.2010.03.054
  36. Ahmetovic, E. and Grossmann, I. E., "Global superstructure optimization for the design of integrated process water networks", AIChE Journal, 57(2), pp. 434~457. (2011). https://doi.org/10.1002/aic.12276
  37. Toews, K. L., Shroll, R. M., Wai, C. M. and Smart, N., "pH-Defining Equilibrium between Water and Supercritical CO2. Influence on SFE of Organics and Metal Chelates", Analytical Chemistry, 67(22), pp. 4040~4043. (1995). https://doi.org/10.1021/ac00118a002
  38. Kim, D. H., Kim, J., Jekal, S., Kim, M. J., Kim, H.-Y., Kim, M. S., Kim, S.-C., Park, S.-Y. and Yoon, C.-M., "Synthesis of Sludge Waste-derived Semiconductor Grade Uniform Colloidal Silica Nanoparticles and Their CMP Application", Journal of the Korea Organic Resources Recycling Association, 30(3), pp. 5~12. (2022).
  39. Richard, B., Lemyre, J.-L. and Ritcey, A. M., "Nanoparticle Size Control in Microemulsion Synthesis", Langmuir, 33(19), pp. 4748~4757. (2017). https://doi.org/10.1021/acs.langmuir.7b00773
  40. Sarma, P. R. L., Mohan, T. R. R., Venkatachalam, S., Sundarsingh, V. P. and Singh, J., "Vibrational modes in electrodeposited amorphous silicon: FT-IR analysis", Journal of Materials Science, 27(17), pp. 4762~4771. (1992). https://doi.org/10.1007/BF01166018
  41. Iler, R. K., "Coagulation of colloidal silica by calcium ions, mechanism, and effect of particle size", Journal of Colloid And Interface Science, 53(3), pp. 476~488. (1975). https://doi.org/10.1016/0021-9797(75)90065-X
  42. Yan, L., Roth, C. B. and Low, P. F., "Changes in the Si-O vibrations of smectite layers - accompanying the sorption of interlayer water", Langmuir, 12(18), pp. 4421~4429. (1996). https://doi.org/10.1021/la960119e
  43. Raghavachari, K., Chabal, Y. J. and Struck, L. M., "Vibrational interactions at surfaces: H2O on Si(100)", Chemical Physics Letters, 252(3-4), pp. 230~235. (1996). https://doi.org/10.1016/0009-2614(96)00096-6
  44. Lee, S., Lee, J., Hwang, S. H., Yun, J. and Jang, J., "Enhanced Electroresponsive Performance of Double-Shell SiO2/TiO2 Hollow Nanoparticles", ACS Nano, 9(5), pp. 4939~4949. (2015). https://doi.org/10.1021/nn5068495