DOI QR코드

DOI QR Code

A Study on the Validity and Test-retest Reliability of the Measurement of the Head Tilt Angle of the Smart Phone Application 'KPIMT Torticollis Protractor'

  • 투고 : 2023.11.20
  • 심사 : 2023.12.26
  • 발행 : 2023.12.31

초록

Purpose: The purpose of this study was to compare the concurrent validity and test-retest reliability of 'KPIMT Torticollis Protractor', a smart phone and I-pad application for convenient range of motion measurement, and 'Image J', an analysis software with high reliability and validity, according to head tilt and active cervical rotation angle. This was done to determine the clinical utility of 'KPIMT Torticollis Protractor'. Methods: Head tilt and active cervical spine rotation angles of 40 children with congenital muscular torticollis were measured using Image J and KPIMT Torticollis Protractor, respectively. The level of concurrent validity and inter-rater and intra-rater reliability between the two measurement methods were analyzed. Results: For forty participants, the concurrent validity between Image J and KPIMT Torticollis Protractor showed very high validity with ICC of ICC 0.977 (0.995-0.999), 0.994 (0.994-0.998), CVME% 0.71-0.72%, SEM% 0.31-0.34%, MDC% 0.86-0.94%. The test-retest intra-rater reliability showed very high reliability ICC 0.911 (0.911-0.966), CVME% 0.71%, SEM% 0.34-0.36%, MDC% 0.81-0.94%. The test-retest inter-rater showed very high reliability ICC 0.936 (0.933-0.957), CVME% 0.70%, SEM% 0.34-0.35%, MDC% 0.81-0.83%. Conclusion: The KPIMT Torticollis Protractor, a smart phone and IPD application, is a highly reliable and valid device for angle measurement in children with congenital myotonia and can be easily used in clinical practice.

키워드

참고문헌

  1. Rogers GF, Oh AK, Mulliken JB. The role of congenital muscular torticollis in the development of deformational plagiocephaly. Plast Reconstr Surg. 2009;123(2):643-52.  https://doi.org/10.1097/PRS.0b013e318196b9be
  2. Hollier L, Kim J, Grayson BH et al. Congenital muscular torticollis and the associated craniofacial changes. Plast Reconstr Surg. 2000;105(3):827-35.  https://doi.org/10.1097/00006534-200003000-00001
  3. Cheng JC, Wong MW, Tang SP et al. Clinical determinants of the outcome of manual stretching in the treatment of congenital muscular torticollis in infants. A prospective study of eight hundred and twenty-one cases. J Bone Joint Surg Am. 2001;83(5):679-87.  https://doi.org/10.2106/00004623-200105000-00006
  4. Cheng JC, Au AW. Infantile torticollis: a review of 624 cases. J Pediatr Orthop. 1994;14(6):802-8.  https://doi.org/10.1097/01241398-199414060-00022
  5. Cheng JC, Tang SP. Outcome of surgical treatment of congenital muscular torticollis. Clin Orthop Relat Res. 1999;(362):190-200. 
  6. Emery C. The determinants of treatment duration for congenital muscular torticollis. Phys Ther. 1994;74(10):921-9.  https://doi.org/10.1093/ptj/74.10.921
  7. Staheli LT. Muscular torticollis: late results of operative treatment. Surgery. 1971;69(3):469-73. 
  8. Theobald PS, Jones MD, Williams JM. Do inertial sensors represent a viable method to reliably measure cervical spine range of motion? Man Ther. 2012;17(1):92-6.  https://doi.org/10.1016/j.math.2011.06.007
  9. Jasiewicz JM, Treleaven J, Condie P et al. Wireless orientation sensors: their suitability to measure head movement for neck pain assessment. Man Ther. 2007;12(4):380-5.  https://doi.org/10.1016/j.math.2006.07.005
  10. Inokuchi H, Tojima M, Mano H et al. Neck range of motion measurements using a new three-dimensional motion analysis system: validity and repeatability. Eur Spine J. 2015;24(12):2807-15.  https://doi.org/10.1007/s00586-015-3913-2
  11. Nilsson N, Christensen HW, Hartvigsen J. The interexaminer reliability of measuring passive cervical range of motion, revisited. J Manipulative Physiol Ther. 1996;19(5):302-5. 
  12. Christensen HW, Nilsson N. The reliability of measuring active and passive cervical range of motion: an observer-blinded and randomized repeated-measures design. J Manipulative Physiol Ther. 1998;21(5):341-7. 
  13. Tyson SA. Systematic review of methods to measure posture. Phys Ther Rev. 2003;8(1):45-50.  https://doi.org/10.1179/108331903225001390
  14. Hald ES, Hertle RW, Yang D. Application of a digital head-posture measuring system in children. Am J Ophthalmol. 2011;151(1):66-70.  https://doi.org/10.1016/j.ajo.2010.07.013
  15. Murgia M, Venditto T, Paoloni M et al. Assessing the cervical range of motion in infants with positional plagiocephaly. J Craniofac Surg. 2016;27(4):1060-4.  https://doi.org/10.1097/SCS.0000000000002644
  16. Ohman AM, Nilsson S, Beckung ER. Validity and reliability of the muscle function scale, aimed to assess the lateral flexors of the neck in infants. Physiother Theory Pract. 2009;25(2):129-37.  https://doi.org/10.1080/09593980802686904
  17. Kim JH, Yum TH, Shim JS. Secondary cervicothoracic scoliosis in congenital muscular torticollis. Clin Orthop Surg. 2019;11(3):344-51.  https://doi.org/10.4055/cios.2019.11.3.344
  18. Kaplan SL, Coulter C, Fetters L. Physical therapy management of congenital muscular torticollis: an evidence-based clinical practice guideline: from the section on pediatrics of the American Physical Therapy Association. Pediatr Phys Ther. 2013;25(4):348-94.  https://doi.org/10.1097/PEP.0b013e3182a778d2
  19. Rahlin M, Sarmiento B. Reliability of still photography measuring habitual head deviation from midline in infants with congenital muscular torticollis. Pediatr Phys Ther. 2010;22(4):399-406.  https://doi.org/10.1097/PEP.0b013e3181f9d72d
  20. McGarry A, Dixon MT, Greig RJ et al. Head shape measurement standards and cranial orthoses in the treatment of infants with deformational plagiocephaly. Dev Med Child Neurol. 2008;50(8):568-76.  https://doi.org/10.1111/j.1469-8749.2008.03017.x
  21. Alqhtani RS, Jones MD, Theobald PS et al. Reliability of an accelerometer-based system for quantifying multiregional spinal range of motion. J Manipulative Physiol Ther. 2015;38(4):275-81.  https://doi.org/10.1016/j.jmpt.2014.12.007
  22. Mejia-Hernandez K, Chang A, Eardley-Harris N et al. Smart phone applications for the evaluation of pathologic shoulder range of motion and shoulder scores-a comparative study. JSES Open Access. 2018;2(1):109-14.  https://doi.org/10.1016/j.jses.2017.10.001
  23. Regelsberger J, Delling G, Tsokos M et al. High-frequency ultrasound confirmation of positional plagiocephaly. J Neurosurg. 2006;105(5 Suppl):413-7.  https://doi.org/10.3171/ped.2006.105.5.413
  24. Elgueta-cancino E, Rice K, Abichandani D et al. Measurement properties of smart phone applications for the measurement of neck range of motions; a systematic review and meta analyses. BMC musculoskelet disord. 2022;23(1):138. 
  25. Suzuki T, Hashisdate H, Fujisawa Y et al. Reliability of measurement using Image J for reach distance and movement angles in the functional reach test. J Phys Ther Sci. 2021;33(2):112-7.  https://doi.org/10.1589/jpts.33.112
  26. Greig AM, Straker LM, Briggs AM. Cervical erector spinae and upper trapezius muscle activity in children using different information technologies. Physiotherapy. 2005;91(2):119-26.  https://doi.org/10.1016/j.physio.2004.10.004
  27. Namwongsa S, Puntumetakul R, Neubert MS et al. Effect of neck flexion angles on neck muscle activity among smart phone users with and without neck pain. Ergonomics. 2019;62(12):1524-33.  https://doi.org/10.1080/00140139.2019.1661525
  28. Ionan AC, Polley MY, McShane LM et al. Comparison of confidence interval methods for an intra-class correlation coefficient (ICC). BMC Med Res Methodol. 2014;14:121. 
  29. Haley SM, Fragala-Pinkham MA. Interpreting change scores of tests and measures used in physical therapy. Phys Ther. 2006;86(5):735-43.  https://doi.org/10.1093/ptj/86.5.735
  30. Kong KA. Statistical methods: reliability assessment and method comparison. The Ewha Medical Journal. 2017;40(1):9-16.  https://doi.org/10.12771/emj.2017.40.1.9
  31. Lee MM, Song CH, Lee KJ et al. Concurrent validity and test-retest reliability of the OPTO Gait photoelectric cell system for the assessment of spatio-temporal parameters of the gait of young adults. J Phys Ther Sci. 2014;26(1):81-5.  https://doi.org/10.1589/jpts.26.81
  32. Pryce R, McDonald N. Prehospital spinal immobilization: effect of effort on kinematics of voluntary head-neck motion assessed using accelerometry. Prehosp Disaster Med. 2016;31(1):36-42.  https://doi.org/10.1017/S1049023X1500552X
  33. Pancani S, Rowson J, Tindale W et al. Assessment of the Sheffield Support Snood, an innovative cervical orthosis designed for people affected by neck muscle weakness. Clin Biomech (Bristol, Avon). 2016;32:201-6.  https://doi.org/10.1016/j.clinbiomech.2015.11.010
  34. Song SH, Hwang GJ, Seo TG et al. Effect of pediatric integrative manual therapy, a novel mobilization with facilitation movement technique, on congenital muscular torticollis after cervical rotation and head angle: a case report. Journal of Korean Orthopedic Manipulative Phys ther. 2023;29(2):77-91. 
  35. Teigen LM, Kuchnia AJ, Nagel E et al. Impact of software selection and ImageJ tutorial corrigendum on skeletal muscle measures at the third lumbar vertebra on computed tomography scans in clinical populations. JPEN J Parenter Enteral Nutr. 2018;42(5):933-41.  https://doi.org/10.1002/jpen.1036
  36. Rha EY, Kim JM, Yoo G. Volume measurement of various tissues using the Image J software. J Craniofac Surg. 2015;26(6):e505-6.  https://doi.org/10.1097/SCS.0000000000002022
  37. Jeffcoate WJ, Musgrove AJ, Lincoln NB. Using image J to document healing in ulcers of the foot in diabetes. Int Wound J. 2017;14(6):1137-9.  https://doi.org/10.1111/iwj.12769
  38. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1(8476):307-10. https://doi.org/10.1016/S0140-6736(86)90837-8