DOI QR코드

DOI QR Code

Modeling the impact of corrosion rate of stirrups on seismic performance of reinforced concrete columns

  • Abbas Ghasemi (Department of Civil Engineering, Faculty of Civil and Earth Resources Engineering, Central Tehran Branch, Islamic Azad University) ;
  • Mohamad Sobhani (Department of Civil Engineering, Faculty of Civil and Earth Resources Engineering, Central Tehran Branch, Islamic Azad University)
  • 투고 : 2022.06.07
  • 심사 : 2023.02.27
  • 발행 : 2023.03.25

초록

It is essential to properly understand the seismic behavior of reinforced concrete (RC) columns confined by stirrups that experience different corrosion rates. The current study investigated the effect of seismic performance indicators such as strength loss, energy dissipation rate, ductility and hysteresis damping on specimens and models for different stirrup corrosion rates. Analysis revealed the adverse effects of corrosion on the bond performance between the concrete and steel bars which affected the seismic performance of the columns. It was found that with increasing corrosion rate, ductility and energy dissipation of the specimens decreased. Compared with the uncorroded specimen, the ductility factor and energy dissipation decreased observably, by 22.89% and 60.64%, respectively. An attenuation relationship is proposed for the corrosion rate of the stirrups for different stirrup yield strengths, concrete compressive strengths, concrete covers and stirrup spacing.

키워드

참고문헌

  1. ABAQUS (2011), Theory Manual, version 6.11., Dassault Systemes Simulia Corporation, Providence, RI, USA.
  2. Alonso, C., Andrade, C., Rodriguez, J. and Diez J.M. (1998), "Factors controlling cracking of concrete affected by reinforcement corrosion", Mater. Struct., 31, 435-441. https://doi.org/10.1007/BF02480466.
  3. Anoop, M.B. and Balaji, R.K. (2015), "Seismic damage estimation of reinforced concrete framed structures affected by chlorideinduced corrosion", Earthq. Struct., 9(4), 851-873. https://doi.org/10.12989/eas.2015.9.4.851.
  4. Arteaga, E. and Stewart, G. (2015), "Damage risks and economic assessment of climate adaptation strategies for design of new concrete structures subject to chloride-induced corrosion", Struct. Saf., 52, 40-53. https://doi.org/10.1016/j.strusafe.2014.10.005.
  5. Attarchi, M., Brenna, A. and Ormellese, M. (2021), "FEM simulation of corrosion under macro-cell mechanism", Corros. Sci., 179, 109116. https://doi.org/10.1016/j.corsci.2020.109116.
  6. Cardone, D., Perrone, G. and Sofia, S. (2013), "Experimental and numerical studies on the cyclic behavior of R/C hollow bridge piers with corroded rebars", Earthq. Struct., 4(1), 41-62. https://doi.org/10.12989/eas.2013.4.1.041.
  7. Coronelli, D. and Gambarova, P. (2004), "Structural assessment of corroded reinforced concrete beams: Modeling guidelines", J. Struct. Eng., 130(8), 1214-1224. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:8(1214).
  8. Darmawan, M. and Stewart, G. (2007), "Spatial time-dependent reliability analysis of corroding pretensioned prestressed concrete bridge girders", Struct. Saf., 29, 16-31. https://doi.org/10.1016/j.strusafe.2005.11.002.
  9. Dejian, S., Ming, L., Ci, L., Jiacheng, K., Chengcai, L. and Jie, Y. (2021), "Seismic performance of corroded reinforced concrete beam-column joints repaired with BFRP sheets", Constr. Build. Mater., 307, 124731. https://doi.org/10.1016/j.conbuildmat.2021.124731.
  10. Dejian, S., Ming, L., Qun, Y., Chuyuan, W., Ci, L., Jiacheng, K. and Xuyang, C. (2022), "Seismic performance of earthquakedamaged corroded reinforced concrete beam-column joints retrofitted with basalt fiber-reinforced polymer sheets", Struct. Infrastruct. Eng., 2022, 1-17. https://doi.org/10.1080/15732479.2022.2147197.
  11. Dejian, S., Qun, Y., Congbin, H., Zhenghua, C. and Jinyang, Z. (2019), "Tests on seismic performance of corroded reinforced concrete shear walls repaired with basalt fiber-reinforced polymers", Constr. Build. Mater. 209, 508-521. https://doi.org/10.1016/j.conbuildmat.2019.02.109.
  12. Dejian, S., Yang, J., Ming, L., Ci, L. and Wei, W. (2021), "Behavior of a 60-year-old reinforced concrete box beam strengthened with basalt fiber-reinforced polymers using steel plate anchorage", J. Adv. Concrete Technol., 19(11), 1100-1119. https://doi.org/10.3151/jact.19.1100.
  13. Fang, C., Lundgren, K., Chen, L. and Zhu, C. (2004), "Corrosion influence on bond in reinforced concrete", Cement Concrete Res., 34, 2159- 2167. https://doi.org/10.1016/j.cemconres.2004.04.006.
  14. Hanjari, K.Z., Lundgrena, K., Plosa, M. and Coronelli, D. (2013), "Three-dimensional modelling of structural effects of corroding steel reinforcement in concrete", Struct. Infrastruct. Eng., 9(7), 702-718. https://doi.org/10.1080/15732479.2011.607830.
  15. Higgins, C. and Farrow, W.C. (2006), "Tests of reinforced concrete beams with corrosion damaged stirrups", ACI Struct. J., 103(1), 133-141. https://doi.org/10.14359/15094.
  16. Jayadipta, G. and Jamie, E.P. (2012), "Impact of multiple component deterioration and exposure conditions on seismic vulnerability of concrete bridges", Earthq. Struct., 3(5), 649-673. https://doi.org/10.12989/eas.2012.3.5.649.
  17. Jin, Z., Zhao, X., Zhao, T. and Li, J. (2018), "Chloride ions transportation behavior and binding capacity of concrete exposed to different marine corrosion zones", Constr. Build. Mater., 177, 170-183. https://doi.org/10.1016/j.conbuildmat.2018.05.120.
  18. Kanchanadevi, A. and Ramanjaneyulu, K. (2019), "Investigations on the behaviour of corrosion damaged gravity load designed beam-column sub-assemblages under reverse cyclic loading", Earthq. Struct., 16(2), 235-251. https://doi.org/10.12989/eas.2019.16.2.235.
  19. Karolinne, O.C., Edson, D.L. and Julio, F.L. (2022), "A methodology to evaluate corroded RC structures using a probabilistic damage approach", Comput. Concrete, 29(1), 1-14. https://doi.org/10.12989/cac.2022.29.1.001.
  20. Kim, A. and Stewart, G. (2000), "Structural reliability of concrete bridges including improved chloride-induced corrosion models", Struct. Saf., 22, 313-333. https://doi.org/10.1016/S0167-4730(00)00018-7.
  21. Le, H., Xianyu, J., Chuanqing, F., Hailong, Y. and Xiaoyu, D. (2020), "Stochastic characteristics of reinforcement corrosion in concrete beams under sustained loads", Comput. Concrete, 25(5), 447-460. https://doi.org/10.12989/cac.2020.25.5.447.
  22. Li, Q., Niu, D., Xiao, Q., Guan, X. and Chen, S. (2018), "Experimental study on seismic behaviors of concrete columns confined by corroded stirrups and lateral strength prediction", Constr. Build. Mater., 162, 704-713. https://doi.org/10.1016/j.conbuildmat.2017.09.030.
  23. Li, Z., Jin, Z., Wang, P. and Zhao, T. (2021), "Corrosion mechanism of reinforced bars inside concrete and relevant monitoring or detection apparatus", Constr. Build. Mater., 279, 122432. https://doi.org/10.1016/j.conbuildmat.2021.122432.
  24. Mazzotti, C., Hasan, M. and Yazdani, N. (2016), "An experimental study for quantitative estimation of rebar corrosion in concrete using ground penetrating radar", J. Eng., 2016(6), 1-8. https://doi.org/10.1155/2016/8536850.
  25. Ming, L., Dejian, S., Qun, Y., Xuyang, C., Ci, L. and Jiacheng, K. (2022), "Rehabilitation of seismic-damaged reinforced concrete beam-column joints with different corrosion rates using basalt fiber-reinforced polymer sheets", Compos. Struct. 289, 115397. https://doi.org/10.1016/j.compstruct.2022.115397.
  26. Mirza, S. and Amleh, L. (1999), "Corrosion influence on bond between steel and concrete", ACI Struct. J., 96(3), 415-423. https://doi.org/10.14359/676.
  27. Nolan, C.C. and Andres, W.C.O. (2021), "Investigation of the effects of corrosion on bond strength of steel in concrete using neural network", Comput. Concrete, 28(1), 77-91. https://doi.org/10.12989/cac.2021.28.1.077.
  28. Ormellese, M., Berra, M., Bolzoni, F. and Pastore, T. (2006), "Corrosion inhibitors for chlorides induced corrosion in reinforced concrete structures", Cement Concrete Res., 36, 536-547. https://doi.org/10.1016/j.cemconres.2005.11.007.
  29. Otieno, M., Beushausen, H. and Alexander, M. (2016), "Chlorideinduced corrosion of steel in cracked concrete-part I: Experimental studies under accelerated and natural marine environments", Cement Concrete Res., 79, 373-385. https://doi.org/10.1016/j.cemconres.2015.08.009.
  30. Pellizzer, G., Leonel, E.D. and Nogueira, C.G. (2015), "Influence of reinforcement's corrosion into hyperstatic reinforced concrete beams: A probabilistic failure scenarios analysis", The IBRACON Struct. Mater. J., 8(4), 479-490. https://doi.org/10.1590/S1983-41952015000400004.
  31. Pitcha, J., Phattarakan, L., Yen, T.H.N., Phuoc, T.N. and Linh, V.H.B. (2021), "Assessment of shear resistance of corroded beams repaired using SFRC in the tension zone", Comput. Concrete, 27(5), 395-406. https://doi.org/10.12989/cac.2021.27.5.395.
  32. Richard, B., Quiertant, M., Bouteiller, V., Delaplace, A., Adelaide, L., Ragueneau, F. and Cremona, C. (2016), "Experimental and numerical analysis of corrosion-induced cover cracking in reinforced concrete sample", Comput. Concrete, 18(3), 421-439. https://doi.org/10.12989/cac.2016.18.3.421.
  33. Rodriguez, J., Ortega, L.M., Casal, J. and Diez, J.M. (1996), "Corrosion of reinforcement and service life of concrete structures", Durab. Build. Mater. Compon., 7(1), 117-126.
  34. Vaezi, H., Karimi, A., Shayanfar, M. and Safiey, A. (2020), "Seismic performance of low-rise reinforced concrete moment frames under carbonation corrosion", Earthq. Struct., 20(2), 215-224. https://doi.org/10.12989/eas.2020.20.2.215.
  35. Vidal, T., Castel, A. and Francois, R. (2004), "Analyzing crack width to predict corrosion in reinforced concrete", Cement Concrete Res., 34(1), 165-174. https://doi.org/10.1016/S0008-8846(03)00246-1.
  36. Xuandong, C., Qing, Z., Ping, C. and Qiuqun, L. (2021), "Numerical model for local corrosion of steel reinforcement in reinforced concrete structure", Comput. Concrete, 27(4), 385-393. https://doi.org/10.12989/cac.2021.27.4.385.
  37. Yuksel, I. and Coskan, S. (2013), "Earthquake response of reinforced concrete frame structures subjected to rebar corrosion", Earthq. Struct., 5(3), 321-341. https://doi.org/10.12989/eas.2013.5.3.321.
  38. Zhang, X., Zhang, Y., Liu, B., Wu, W. and Yang, C. (2021), "Corrosion-induced spalling of concrete cover and its effects on shear strength of RC beams", Eng. Fail. Anal., 127(11), 105538. https://doi.org/10.1016/j.engfailanal.2021.105538.
  39. Zhou, Y., Gencturk, B., Willam, K. and Attar, A. (2016), "Carbonation-induced and chloride-induced corrosion in reinforced concrete structures", J. Mater. Civil Eng., 27(9), 04014245. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001209.