DOI QR코드

DOI QR Code

Body action impacts the stability of nanomedicine tools in the drug delivery

  • Peng Zou (Department of Neurosurgery, Yuhuangding Hospital of Yantai) ;
  • Wei Zhao (Department of Neurosurgery, Yuhuangding Hospital of Yantai) ;
  • Jinpeng Dong (Department of Neurosurgery, Yuhuangding Hospital of Yantai) ;
  • Yinyin Cao (Department of Pediatrics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University)
  • 투고 : 2022.03.24
  • 심사 : 2022.08.18
  • 발행 : 2023.03.25

초록

Muscle strength and hypertrophy are equivalent when low-intensity resistance exercise is paired with blood flow restriction. This paper deals with the impact of physical exercise in the form of body activities on drug delivery using nanodevices. The body's actions impact the blood flow since the nano drug delivery devices are released into the bloodstream, and physical exercise and all the activities that change the blood flow influence the stability of these nanodevices. The nanodevice for the drug delivery purpose is modeled via nonuniform tube structures based on the high-order beam theory along with the nonlocal strain gradient theory. The nanodevice is made by a central nanomotor as well as two nanoblade in the form of truncated conical nanotubes carrying the nanomedicine. The mathematical simulation of rotating nanodevices is numerically solved, and the effect of various parameters on the stability of nanodevices has been studied in detail after the validation study.

키워드

과제정보

This work was supported by Shandong Medical and Healthy Science Technology Development Plan (202004040974).

참고문헌

  1. Adamian, A., Safari, K.H., Sheikholeslami, M., Habibi, M., Al-Furjan, M. and Chen, G. (2020), "Critical temperature and frequency characteristics of GPLs-reinforced composite doubly curved panel", Appl. Sci., 10(9), 3251. https://doi.org/10.3390/app10093251.
  2. Adepu, S. and Ramakrishna, S. (2021), "Controlled drug delivery systems: Current status and future directions", Molecules, 26(19), 5905. https://doi.org/10.3390/molecules26195905.
  3. Al-Furjan, M., Dehini, R., Khorami, M., Habibi, M. and won Jung, D. (2020a), "On the dynamics of the ultra-fast rotating cantilever orthotropic piezoelectric nanodisk based on nonlocal strain gradient theory", Compos. Struct., 112990. https://doi.org/10.1016/j.compstruct.2020.112990.
  4. Al-Furjan, M., Fereidouni, M., Habibi, M., Abd Ali, R., Ni, J. and Safarpour, M. (2020b), "Influence of in-plane loading on the vibrations of the fully symmetric mechanical systems via dynamic simulation and generalized differential quadrature framework", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-020-01177-7.
  5. Al-Furjan, M., Moghadam, S.A., Dehini, R., Shan, L., Habibi, M. and Safarpour, H. (2020c), "Vibration control of a smart shell reinforced by graphene nanoplatelets under external load: Semi-numerical and finite element modeling", Thin Wall. Struct., 107242. https://doi.org/10.1016/j.tws.2020.107242.
  6. Alimardani, V., Abolmaali, S.S., Yousefi, G., Rahiminezhad, Z., Abedi, M., Tamaddon, A. and Ahadian, S. (2021), "Microneedle arrays combined with nanomedicine approaches for transdermal delivery of therapeutics", J. Clinic. Med., 10(2), 181. https://doi.org/10.3390/jcm10020181.
  7. Ansari, A.A., Parchur, A.K., Thorat, N.D. and Chen, G. (2021), "New advances in pre-clinical diagnostic imaging perspectives of functionalized upconversion nanoparticle-based nanomedicine", Coordinat. Chem. Rev., 440 213971. https://doi.org/10.1016/j.ccr.2021.213971.
  8. Azimi, M., Mirjavadi, S.S., Shafiei, N. and Hamouda, A.M.S. (2016), "Thermo-mechanical vibration of rotating axially functionally graded nonlocal Timoshenko beam", Appl. Phys. A, 123(1), 104. https://doi.org/10.1007/s00339-016-0712-5.
  9. Azimi, M., Mirjavadi, S.S., Shafiei, N., Hamouda, A.M.S. and Davari, E. (2018), "Vibration of rotating functionally graded Timoshenko nano-beams with nonlinear thermal distribution", Mech. Adv. Mater. Struct., 25(6), 467-480. https://doi.org/10.1080/15376494.2017.1285455.
  10. Bernal, A., Calcagno, C., Mulder, W.J. and Perez-Medina, C. (2021), "Imaging-guided nanomedicine development", Curr. Opinion Chem. Biol., 63, 78-85. https://doi.org/10.1016/j.cbpa.2021.01.014.
  11. Bruno, F., Granata, V., Cobianchi Bellisari, F., Sgalambro, F., Tommasino, E., Palumbo, P., Arrigoni, F., Cozzi, D., Grassi, F. and Brunese, M.C. (2022), "Advanced Magnetic Resonance Imaging (MRI) Techniques: Technical principles and applications in nanomedicine", Cancers, 14(7), 1626. https://doi.org/10.3390/cancers14071626.
  12. Cai, S.S., Li, T., Akinade, T., Zhu, Y. and Leong, K.W. (2021), "Drug delivery carriers with therapeutic functions", Adv. Drug Deliv. Rev., 176, 113884. https://doi.org/10.1016/j.addr.2021.113884.
  13. Cao, C., Wang, J., Kwok, D., Cui, F., Zhang, Z., Zhao, D., Li, M.J. and Zou, Q. (2022a), "webTWAS: a resource for disease candidate susceptibility genes identified by transcriptome-wide association study", Nucleic Acids Res., 50(D1), D1123-D1130. https://doi.org/10.1093/nar/gkab957.
  14. Cao, Z., Zhang, L., Ahmad, A.M., Alsaadi, F.E. and Alassafi, M.O. (2022b), "Adaptive neural prescribed performance control for switched pure-feedback non-linear systems with input quantization", Assembl. Automat., 42(6), 869-880. https://doi.org/10.1108/AA-05-2022-0126.
  15. Chen, S., Chen, Y., Fu, M., Cao, Q., Wang, B., Chen, W. and Ma, X. (2022), "Active nanomotors surpass passive nanomedicines: Current progress and challenges", J. Mater. Chem. B, 10, 7099-7107. https://doi.org/10.1039/D2TB00556E.
  16. Cheshmeh, E., Karbon, M., Eyvazian, A., Jung, D.w., Habibi, M. and Safarpour, M. (2020), "Buckling and vibration analysis of FG-CNTRC plate subjected to thermo-mechanical load based on higher order shear deformation theory", Mech. Based Des. Struct., 1-24. https://doi.org/10.1080/15397734.2020.1744005.
  17. Dai, Z., Jiang, Z., Zhang, L. and Habibi, M. (2021a), "Frequency characteristics and sensitivity analysis of a size-dependent laminated nanoshell", Adv. Nano Res., 10(2), 175. https://doi.org/10.12989/anr.2021.10.2.175.
  18. Dai, Z., Zhang, L., Bolandi, S.Y. and Habibi, M. (2021b), "On the vibrations of the non-polynomial viscoelastic composite open-type shell under residual stresses", Compos. Struct., 113599. https://doi.org/10.1016/j.compstruct.2021.113599.
  19. De Lazaro, I. and Mooney, D.J. (2021), "Obstacles and opportunities in a forward vision for cancer nanomedicine", Nature Mater., 20(11), 1469-1479. https://doi.org/10.1038/s41563-021-01047-7.
  20. Diez, P., Lucena-Sanchez, E., Escudero, A., Llopis-Lorente, A., Villalonga, R. and Martinez-Manez, R. (2021), "Ultrafast directional Janus Pt-mesoporous silica nanomotors for smart drug delivery", ACS Nano, 15(3), 4467-4480. https://doi.org/10.1021/acsnano.0c08404.
  21. Ebrahimi, F. and Shafiei, N. (2016), "Application of Eringen's nonlocal elasticity theory for vibration analysis of rotating functionally graded nanobeams", Smart Struct. Syst., 17(5), 837-857. https://doi.org/10.12989/sss.2016.17.5.837.
  22. Ebrahimi, F. and Shafiei, N. (2017), "Influence of initial shear stress on the vibration behavior of single-layered graphene sheets embedded in an elastic medium based on Reddy's higher-order shear deformation plate theory", Mech. Adv. Mater. Struct., 24(9), 761-772. https://doi.org/10.1080/15376494.2016.1196781.
  23. Ebrahimi, F., Shafiei, N., Kazemi, M. and Mousavi Abdollahi, S.M. (2017), "Thermo-mechanical vibration analysis of rotating nonlocal nanoplates applying generalized differential quadrature method", Mech. Adv. Mater. Struct., 24(15), 1257-1273. https://doi.org/10.1080/15376494.2016.1227499.
  24. Ehyaei, J., Akbarshahi, A. and Shafiei, N. (2017), "Influence of porosity and axial preload on vibration behavior of rotating FG nanobeam", Adv. Nano Res., 5(2), 141. https://doi.org/10.12989/anr.2017.5.2.141.
  25. Gao, C., Feng, Y., Wilson, D.A., Tu, Y. and Peng, F. (2022), "Micro-nano motors with taxis behavior: Principles, designs, and biomedical applications", Small, 18(15), 2106263. https://doi.org/10.1002/smll.202106263.
  26. Gao, W. and Wang, J. (2014), "Synthetic micro/nanomotors in drug delivery", Nanoscale, 6(18), 10486-10494. https://doi.org/10.1039/C4NR03124E.
  27. Geo, H.N., Murugan, D.D., Chik, Z., Norazit, A., Foo, Y.Y., Leo, B.F., Teo, Y.Y., Abdul, S.Z.S.B.S., Chan, Y. and Chai, H.J. (2022), "Renal Nano-drug delivery for acute kidney Injury: Current status and future perspectives", J. Control. Release, 343, 237-254. https://doi.org/10.1016/j.jconrel.2022.01.033.
  28. Ghadiri, M., Hosseini, S.H.S. and Shafiei, N. (2016a), "A power series for vibration of a rotating nanobeam with considering thermal effect", Mech. Adv. Mater. Struct., 23(12), 1414-1420. https://doi.org/10.1080/15376494.2015.1091527.
  29. Ghadiri, M., Mahinzare, M., Shafiei, N. and Ghorbani, K. (2017a), "On size-dependent thermal buckling and free vibration of circular FG Microplates in thermal environments", Microsyst. Technol., 23(10), 4989-5001. https://doi.org/10.1007/s00542-017-3308-x.
  30. Ghadiri, M. and Shafiei, N. (2016a), "Nonlinear bending vibration of a rotating nanobeam based on nonlocal Eringen's theory using differential quadrature method", Microsyst. Technol., 22(12), 2853-2867. https://doi.org/10.1007/s00542-015-2662-9.
  31. Ghadiri, M. and Shafiei, N. (2016b), "Vibration analysis of a nano-turbine blade based on Eringen nonlocal elasticity applying the differential quadrature method", J. Vib. Control, 23(19), 3247-3265. https://doi.org/10.1177/1077546315627723.
  32. Ghadiri, M. and Shafiei, N. (2016c), "Vibration analysis of rotating functionally graded Timoshenko microbeam based on modified couple stress theory under different temperature distributions", Acta Astronaut., 121, 221-240. https://doi.org/10.1016/j.actaastro.2016.01.003.
  33. Ghadiri, M., Shafiei, N. and Akbarshahi, A. (2016b), "Influence of thermal and surface effects on vibration behavior of nonlocal rotating Timoshenko nanobeam", Appl. Phys. A, 122(7), 673. https://doi.org/10.1007/s00339-016-0196-3.
  34. Ghadiri, M., Shafiei, N. and Alavi, H. (2017b), "Thermomechanical vibration of orthotropic cantilever and propped cantilever nanoplate using generalized differential quadrature method", Mech. Adv. Mater. Struct., 24(8), 636-646. https://doi.org/10.1080/15376494.2016.1196770.
  35. Ghadiri, M., Shafiei, N. and Alavi, H. (2017c), "Vibration analysis of a rotating nanoplate using nonlocal elasticity theory", J. Solid Mech., 9(2), 319-337.
  36. Ghadiri, M., Shafiei, N. and Alireza Mousavi, S. (2016c), "Vibration analysis of a rotating functionally graded tapered microbeam based on the modified couple stress theory by DQEM", Appl. Phys. A, 122(9), 837. https://doi.org/10.1007/s00339-016-0364-5.
  37. Ghadiri, M., Shafiei, N. and Babaei, R. (2017d), "Vibration of a rotary FG plate with consideration of thermal and Coriolis effects", Steel Compos. Struct., 25(2), 197-207. https://doi.org/10.12989/SCS.2017.25.2.197.
  38. Ghadiri, M., Shafiei, N. and Safarpour, H. (2017e), "Influence of surface effects on vibration behavior of a rotary functionally graded nanobeam based on Eringen's nonlocal elasticity", Microsyst. Technol., 23(4), 1045-1065. https://doi.org/10.1007/s00542-016-2822-6.
  39. Ghadiri, M., Shafiei, N., Salekdeh, S.H., Mottaghi, P. and Mirzaie, T. (2016d), "Investigation of the dental implant geometry effect on stress distribution at dental implant-bone interface", J. Brazil. Soc. Mech. Sci. Eng., 38(2), 335-343. https://doi.org/10.1007/s40430-015-0472-8.
  40. Giri, G., Maddahi, Y. and Zareinia, K. (2021), "A brief review on challenges in design and development of nanorobots for medical applications", Appl. Sci., 11(21), 10385. https://doi.org/10.3390/app112110385.
  41. Globus, M., Melamed, E., Keren, A., Tzivoni, D., Granot, C., Lavy, S. and Stern, S. (1983), "Effect of exercise on cerebral circulation", J. Cerebr. Blood F Met., 3(3), 287-290. https://doi.org/10.1038/jcbfm.1983.43.
  42. Gu, B., Huang, Y., Manchester, E.L., Hughes, A.D., Thom, S.A.M., Chen, R. and Xu, X.Y. (2022), "Multiphysics modelling and simulation of thrombolysis via activated platelet-targeted nanomedicine", Pharm. Rese., 39(1), 41-56. https://doi.org/10.1007/s11095-021-03161-2.
  43. Guo, J., Baharvand, A., Tazeddinova, D., Habibi, M., Safarpour, H., Roco-Videla, A. and Selmi, A. (2021), "An intelligent computer method for vibration responses of the spinning multilayer symmetric nanosystem using multi-physics modeling", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-021-01433-4.
  44. Gupta, A., Soni, S., Chauhan, N., Khanuja, M. and Jain, U. (2022), "Nanobots-based advancement in targeted drug delivery and imaging: An update", J. Control. Release, 349, 97-108. https://doi.org/10.1016/j.jconrel.2022.06.020.
  45. Habibi, M., Darabi, R., Sa, J.C.d. and Reis, A. (2021), "An innovation in finite element simulation via crystal plasticity assessment of grain morphology effect on sheet metal formability", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 235(8), 1937-1951. https://doi.org/10.1177/14644207211024686.
  46. Hashemi, H.R., Alizadeh, A.a., Oyarhossein, M.A., Shavalipour, A., Makkiabadi, M. and Habibi, M. (2019), "Influence of imperfection on amplitude and resonance frequency of a reinforcement compositionally graded nanostructure", Wave. Random Complex Med., 1-27. https://doi.org/10.1080/17455030.2019.1662968.
  47. He, X., Ding, J., Habibi, M., Safarpour, H. and Safarpour, M. (2021), "Non-polynomial framework for bending responses of the multi-scale hybrid laminated nanocomposite reinforced circular/annular plate", Thin Wall. Struct., 166, 108019. https://doi.org/10.1016/j.tws.2021.108019.
  48. Hellstrom, G. and Wahlgren, N.G. (1993), "Physical exercise increases middle cerebral artery blood flow velocity", Neurosurg. Rev., 16(2), 151-156. https://doi.org/10.1007/BF00258249.
  49. Herrmann, I.K., Wood, M.J.A. and Fuhrmann, G. (2021), "Extracellular vesicles as a next-generation drug delivery platform", Nature Nanotechnol., 16(7), 748-759. https://doi.org/10.1038/s41565-021-00931-2.
  50. Hou, F., Wu, S., Moradi, Z. and Shafiei, N. (2021), "The computational modeling for the static analysis of axially functionally graded micro-cylindrical imperfect beam applying the computer simulation", Eng. Comput., 1-19. https://doi.org/10.1007/s00366-021-01456-x.
  51. Huang, L., Chen, F., Lai, Y., Xu, Z. and Yu, H. (2021a), "Engineering nanorobots for tumor-targeting drug delivery: From dynamic control to stimuli-responsive strategy", Chembiochem, 22(24), 3369-3380. https://doi.org/10.1002/cbic.202100347.
  52. Huang, X., Hao, H., Oslub, K., Habibi, M. and Tounsi, A. (2021b), "Dynamic stability/instability simulation of the rotary size-dependent functionally graded microsystem", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-021-01399-3.
  53. Huang, X., Zhang, Y., Moradi, Z. and Shafiei, N. (2021c), "Computer simulation via a couple of homotopy perturbation methods and the generalized differential quadrature method for nonlinear vibration of functionally graded non-uniform microtube", Eng. Comput., 1-18. https://doi.org/10.1007/s00366-021-01395-7.
  54. Huang, X., Zhu, Y., Vafaei, P., Moradi, Z. and Davoudi, M. (2021d), "An iterative simulation algorithm for large oscillation of the applicable 2D-electrical system on a complex nonlinear substrate", Eng. Comput., 1-13. https://doi.org/10.1007/s00366-021-01320-y.
  55. Jiao, J., Ghoreishi, S.-m., Moradi, Z. and Oslub, K. (2021), "Coupled particle swarm optimization method with genetic algorithm for the static-dynamic performance of the magneto-electro-elastic nanosystem", Eng. Comput., 1-15. https://doi.org/10.1007/s00366-021-01391-x.
  56. Karaca, G.Y., Kuralay, F., Uygun, E., Ozaltin, K., Demirbuken, S.E., Garipcan, B., Oksuz, L. and Oksuz, A.U. (2021), "Gold-nickel nanowires as nanomotors for cancer marker biodetection and chemotherapeutic drug delivery", ACS Appl. Nano Mater., 4(4), 3377-3388. https://doi.org/10.1021/acsanm.0c03145.
  57. Karsauliya, K., Singh, S.P. and Sharma, M. (2022), Nanodevices for Drug Delivery Systems, CRC Press.
  58. Kawakami, S., Yasuno, T., Kawakami, S., Ito, A., Fujimi, K., Matsuda, T., Nakashima, S., Masutani, K., Uehara, Y. and Higaki, Y. (2022), "The moderate-intensity continuous exercise maintains renal blood flow and does not impair the renal function", Physiol. Rep., 10(15), e15420. https://doi.org/10.14814/phy2.15420.
  59. Kolitsi, L.I., Orova, M. and Yiantsios, S.G. (2022), "A model of magnetic nanoparticle transport and their effects in tumor areas: Assessment of desirable magnetic properties", J. Magnet. Magnet. Mater., 169732. https://doi.org/10.1016/j.jmmm.2022.169732.
  60. Lawson, H.D., Walton, S.P. and Chan, C. (2021), "Metal-organic frameworks for drug delivery: A design perspective", ACS Appl. Mater. Interf., 13(6), 7004-7020. https://doi.org/10.1021/acsami.1c01089.
  61. Li, P., Yang, M. and Wu, Q. (2021), "Confidence interval based distributionally robust real-time economic dispatch approach considering wind power accommodation risk", IEEE T. Sust. Energy, 12(1), 58-69. https://doi.org/10.1109/TSTE.2020.2978634.
  62. Li, Y., Li, S., Guo, K., Fang, X. and Habibi, M. (2020), "On the modeling of bending responses of graphene-reinforced higher order annular plate via two-dimensional continuum mechanics approach", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-020-01166-w.
  63. Liu, H., Zhao, Y., Pishbin, M., Habibi, M., Bashir, M. and Issakhov, A. (2021a), "A comprehensive mathematical simulation of the composite size-dependent rotary 3D microsystem via two-dimensional generalized differential quadrature method", Eng. Comput., 1-16. https://doi.org/10.1007/s00366-021-01419-2.
  64. Liu, Y., Wang, W., He, T., Moradi, Z. and Larco Benitez, M.A. (2021b), "On the modelling of the vibration behaviors via discrete singular convolution method for a high-order sector annular system", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-021-01454-z.
  65. Liu, Z., Su, S., Xi, D. and Habibi, M. (2020a), "Vibrational responses of a MHC viscoelastic thick annular plate in thermal environment using GDQ method", Mech. Based Des. Struct., 1-26. https://doi.org/10.1080/15397734.2020.1784201.
  66. Liu, Z., Wu, X., Yu, M. and Habibi, M. (2020b), "Large-amplitude dynamical behavior of multilayer graphene platelets reinforced nanocomposite annular plate under thermo-mechanical loadings", Mech. Based Des. Struct., 1-25. https://doi.org/10.1080/15397734.2020.1815544.
  67. Lori, E.S., Ebrahimi, F., Supeni, E.E.B., Habibi, M. and Safarpour, H. (2020), "The critical voltage of a GPL-reinforced composite microdisk covered with piezoelectric layer", Eng. Comput., 1-20. https://doi.org/10.1007/s00366-020-01004-z.
  68. Lu, P., Lee, H., Lu, C. and Zhang, P. (2006a), "Dynamic properties of flexural beams using a nonlocal elasticity model", J. Appl. Phys., 99(7), 073510. https://doi.org/10.1063/1.2189213.
  69. Lu, P., Lee, H.P., Lu, C. and Zhang, P.Q. (2006b), "Dynamic properties of flexural beams using a nonlocal elasticity model", J. Appl. Phys., 99(7), 073510. https://doi.org/10.1063/1.2189213.
  70. Ma, L., Liu, X. and Moradi, Z. (2021), "On the chaotic behavior of graphene-reinforced annular systems under harmonic excitation", Eng. Comput., 1-25. https://doi.org/10.1007/s00366-020-01210-9.
  71. Mahmoudi, M. (2021), "The need for robust characterization of nanomaterials for nanomedicine applications", Nature Commun., 12(1), 5246. https://doi.org/10.1038/s41467-021-25584-6.
  72. Maina, G., Bramante, S., Borsotti, A., Oliva, F., Rigardetto, S. and Albert, U. (2021), "Adverse events of antipsychotics and cytochrome polymorphisms: A case series on 31 patients", Psychiatria Danubina, 33(4), 523-531. https://doi.org/10.24869/psyd.2021.523.
  73. Malikan, M. and Eremeyev, V.A. (2021), "Effect of surface on the flexomagnetic response of ferroic composite nanostructures: Nonlinear bending analysis", Compos. Struct., 271, 114179. https://doi.org/10.1016/j.compstruct.2021.114179.
  74. Manzari, M.T., Shamay, Y., Kiguchi, H., Rosen, N., Scaltriti, M. and Heller, D.A. (2021), "Targeted drug delivery strategies for precision medicines", Nature Rev. Mater., 6(4), 351-370. https://doi.org/10.1038/s41578-020-00269-6.
  75. Miller, C.T., Gray, W.G. and Schrefler, B.A. (2022), "A continuum mechanical framework for modeling tumor growth and treatment in two-and three-phase systems", Arch. Appl. Mech., 92(2), 461-489. https://doi.org/10.1007/s00419-021-01891-8.
  76. Mirjavadi, S.S., Afshari, B.M., Shafiei, N., Hamouda, A., Kazemi, M. and Structures, C. (2017a), "Thermal vibration of two-dimensional functionally graded (2D-FG) porous Timoshenko nanobeams", Steel Compos. Struct., 25(4), 415-426. https://doi.org/10.12989/scs.2017.25.4.415.
  77. Mirjavadi, S.S., Matin, A., Shafiei, N., Rabby, S. and Mohasel Afshari, B. (2017b), "Thermal buckling behavior of two-dimensional imperfect functionally graded microscale-tapered porous beam", J. Therm. Stress., 40(10), 1201-1214. https://doi.org/10.1080/01495739.2017.1332962.
  78. Mirjavadi, S.S., Mohasel Afshari, B., Shafiei, N., Rabby, S. and Kazemi, M. (2017c), "Effect of temperature and porosity on the vibration behavior of two-dimensional functionally graded micro-scale Timoshenko beam", J. Vib. Control, 24(18), 4211-4225. https://doi.org/10.1177/1077546317721871.
  79. Mirjavadi, S.S., Rabby, S., Shafiei, N., Afshari, B.M. and Kazemi, M. (2017d), "On size-dependent free vibration and thermal buckling of axially functionally graded nanobeams in thermal environment", Appl. Phys. A, 123(5), 315. https://doi.org/10.1007/s00339-017-0918-1.
  80. Mitchell, M.J., Billingsley, M.M., Haley, R.M., Wechsler, M.E., Peppas, N.A. and Langer, R. (2021), "Engineering precision nanoparticles for drug delivery", Nature Revi. Drug Disc., 20(2), 101-124. https://doi.org/10.1038/s41573-020-0090-8.
  81. Moayedi, H., Aliakbarlou, H., Jebeli, M., Noormohammadiarani, O., Habibi, M., Safarpour, H. and Foong, L. (2020a), "Thermal buckling responses of a graphene reinforced composite micropanel structure", Int. J. Appl. Mech., 12(1), 2050010. https://doi.org/10.1142/S1758825120500106.
  82. Moayedi, H., Ebrahimi, F., Habibi, M., Safarpour, H. and Foong, L.K. (2020b), "Application of nonlocal strain-stress gradient theory and GDQEM for thermo-vibration responses of a laminated composite nanoshell", Eng. Comput., 1-16. https://doi.org/10.1007/s00366-020-01002-1.
  83. Moayedi, H., Habibi, M., Safarpour, H., Safarpour, M. and Foong, L. (2019), "Buckling and frequency responses of a graphene nanoplatelet reinforced composite microdisk", Int. J. Appl. Mech., 11(10), 1950102. https://doi.org/10.1142/S1758825119501023.
  84. Moradi, Z., Davoudi, M., Ebrahimi, F. and Ehyaei, A.F. (2021), "Intelligent wave dispersion control of an inhomogeneous micro-shell using a proportional-derivative smart controller", Wave. Random Complex Med., 1-24. https://doi.org/10.1080/17455030.2021.1926572.
  85. Najaafi, N., Jamali, M., Habibi, M., Sadeghi, S., Jung, D.w. and Nabipour, N. (2020), "Dynamic instability responses of the substructure living biological cells in the cytoplasm environment using stress-strain size-dependent theory", J. Biomol. Struct. Dyn., 1-12. https://doi.org/10.1080/07391102.2020.1751297.
  86. Oyarhossein, M.A., Alizadeh, A.a., Habibi, M., Makkiabadi, M., Daman, M., Safarpour, H. and Jung, D.W. (2020), "Dynamic response of the nonlocal strain-stress gradient in laminated polymer composites microtubes", Sci. Rep., 10(1), 1-19. https://doi.org/10.1038/s41598-020-61855-w.
  87. Paunovska, K., Loughrey, D. and Dahlman, J.E. (2022), "Drug delivery systems for RNA therapeutics", Nature Rev. Genet., 23(5), 265-280. https://doi.org/10.1038/s41576-021-00439-4.
  88. Pavlichenko, A., Smirnova, D., Susloparova, D., Syunyakov, T. and Kostyuk, G. (2021), "A one-day cross-sectional study of antidepressants prescription patterns in public mental health services: Clinical guidelines vs real clinical practice in Russia", Psychiatria Danubina, 33(suppl 9), 47-54.
  89. Ramadon, D., McCrudden, M.T.C., Courtenay, A.J. and Donnelly, R.F. (2022), "Enhancement strategies for transdermal drug delivery systems: Current trends and applications", Drug Deliv. Translat. Res., 12(4), 758-791. https://doi.org/10.1007/s13346-021-00909-6.
  90. Rastmanesh, A., Yaraki, M.T., Wu, J., Wang, Z., Ghoderao, P., Gao, Y. and Tan, Y.N. (2021), "Bioinspired micro/nanomotors towards a self-propelled noninvasive diagnosis and treatment of cancer", Mol. Syst. Des. Eng., 6(8), 566-593. https://doi.org/10.1039/D1ME00065A.
  91. Rommasi, F. and Esfandiari, N. (2021), "Liposomal nanomedicine: Applications for drug delivery in cancer therapy", Nanosc. Res. Lett., 16(1), 95. https://doi.org/10.1186/s11671-021-03553-8.
  92. Roudbari, M.A., Jorshari, T.D., Lu, C., Ansari, R., Kouzani, A.Z. and Amabili, M. (2022), "A review of size-dependent continuum mechanics models for micro-and nano-structures", Thin Wall. Struct., 170, 108562. https://doi.org/10.1016/j.tws.2021.108562.
  93. Shafiei, N., Ghadiri, M. and Mahinzare, M. (2019), "Flapwise bending vibration analysis of rotary tapered functionally graded nanobeam in thermal environment", Mech. Adv. Mater. Struct., 26(2), 139-155. https://doi.org/10.1080/15376494.2017.1365982.
  94. Shafiei, N., Ghadiri, M., Makvandi, H. and Hosseini, S.A. (2017a), "Vibration analysis of Nano-Rotor's Blade applying Eringen nonlocal elasticity and generalized differential quadrature method", Appl. Math. Modell., 43, 191-206. https://doi.org/10.1016/j.apm.2016.10.061.
  95. Shafiei, N., Hamisi, M. and Ghadiri, M. (2020), "Vibration analysis of rotary tapered axially functionally graded Timoshenko nanobeam in thermal environment", J. Solid Mech., 12(1), 16-32.
  96. Shafiei, N. and Kazemi, M. (2017a), "Buckling analysis on the bi-dimensional functionally graded porous tapered nano-/micro-scale beams", Aerosp. Sci. Technol., 66, 1-11. https://doi.org/10.1016/j.ast.2017.02.019.
  97. Shafiei, N. and Kazemi, M. (2017b), "Nonlinear buckling of functionally graded nano-/micro-scaled porous beams", Compos. Struct., 178, 483-492. https://doi.org/10.1016/j.compstruct.2017.07.045.
  98. Shafiei, N., Kazemi, M. and Fatahi, L. (2017b), "Transverse vibration of rotary tapered microbeam based on modified couple stress theory and generalized differential quadrature element method", Mech. Adv. Mater. Struct., 24(3), 240-252. https://doi.org/10.1080/15376494.2015.1128025.
  99. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016a), "Comparison of modeling of the rotating tapered axially functionally graded Timoshenko and Euler-Bernoulli microbeams", Physica E, 83, 74-87. https://doi.org/10.1016/j.physe.2016.04.011.
  100. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016b), "Nonlinear vibration behavior of a rotating nanobeam under thermal stress using Eringen's nonlocal elasticity and DQM", Appl. Phys. A, 122(8), 728. https://doi.org/10.1007/s00339-016-0245-y.
  101. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016c), "Nonlinear vibration of axially functionally graded tapered microbeams", Int. J. Eng. Sci., 102, 12-26. https://doi.org/10.1016/j.ijengsci.2016.02.007.
  102. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016d), "On size-dependent vibration of rotary axially functionally graded microbeam", Int. J. Eng. Sci., 101, 29-44. https://doi.org/10.1016/j.ijengsci.2015.12.008.
  103. Shafiei, N., Kazemi, M., Safi, M. and Ghadiri, M. (2016e), "Nonlinear vibration of axially functionally graded non-uniform nanobeams", Int. J. Eng. Sci., 106, 77-94. https://doi.org/10.1016/j.ijengsci.2016.05.009.
  104. Shafiei, N., Mirjavadi, S.S., Afshari, B.M., Rabby, S. and Hamouda, A.M.S. (2017c), "Nonlinear thermal buckling of axially functionally graded micro and nanobeams", Compos. Struct., 168, 428-439. https://doi.org/10.1016/j.compstruct.2017.02.048.
  105. Shafiei, N., Mirjavadi, S.S., MohaselAfshari, B., Rabby, S. and Kazemi, M. (2017d), "Vibration of two-dimensional imperfect functionally graded (2D-FG) porous nano-/micro-beams", Comput. Meth. Appl. Mech. Eng., 322, 615-632. https://doi.org/10.1016/j.cma.2017.05.007.
  106. Shafiei, N., Mousavi, A. and Ghadiri, M. (2016f), "On size-dependent nonlinear vibration of porous and imperfect functionally graded tapered microbeams", Int. J. Eng. Sci., 106, 42-56. https://doi.org/10.1016/j.ijengsci.2016.05.007.
  107. Shafiei, N., Mousavi, A. and Ghadiri, M. (2016g), "Vibration behavior of a rotating non-uniform FG microbeam based on the modified couple stress theory and GDQEM", Compos. Struct., 149, 157-169. https://doi.org/10.1016/j.compstruct.2016.04.024.
  108. Shafiei, N. and She, G.L. (2018), "On vibration of functionally graded nano-tubes in the thermal environment", Int. J. Eng. Sci., 133, 84-98. https://doi.org/10.1016/j.ijengsci.2018.08.004.
  109. Shao, Y., Zhao, Y., Gao, J. and Habibi, M. (2021), "Energy absorption of the strengthened viscoelastic multi-curved composite panel under friction force", Arch. Civil Mech. Eng., 21(4), 1-29. https://doi.org/10.1007/s43452-021-00279-3.
  110. Shariati, A., Mohammad-Sedighi, H., Zur, K.K., Habibi, M. and Safa, M. (2020a), "On the vibrations and stability of moving viscoelastic axially functionally graded nanobeams", Materials, 13(7), 1707. https://doi.org/10.3390/ma13071707.
  111. Shariati, A., Mohammad-Sedighi, H., Zur, K.K., Habibi, M. and Safa, M. (2020b), "Stability and dynamics of viscoelastic moving rayleigh beams with an asymmetrical distribution of material parameters", Symmetry. 12(4), 586. https://doi.org/10.3390/sym12040586.
  112. Shivanian, E., Ghadiri, M. and Shafiei, N. (2017), "Influence of size effect on flapwise vibration behavior of rotary microbeam and its analysis through spectral meshless radial point interpolation", Appl. Phys. A, 123(5), 329. https://doi.org/10.1007/s00339-017-0955-9.
  113. Si, Z., Yang, M., Yu, Y. and Ding, T. (2021), "Photovoltaic power forecast based on satellite images considering effects of solar position", Appl. Energy, 302, 117514. https://doi.org/10.1016/j.apenergy.2021.117514.
  114. Singh, A.V., Chandrasekar, V., Janapareddy, P., Mathews, D.E., Laux, P., Luch, A., Yang, Y., Garcia-Canibano, B., Balakrishnan, S. and Abinahed, J. (2021), "Emerging application of nanorobotics and artificial intelligence to cross the BBB: advances in design, controlled maneuvering, and targeting of the barriers", ACS Chem. Neurosci., 12(11), 1835-1853. https://doi.org/10.1021/acschemneuro.1c00087.
  115. Smith, E.C., Pizzey, F.K., Askew, C.D., Mielke, G.I., Ainslie, P.N., Coombes, J.S. and Bailey, T.G. (2021), "Effects of cardiorespiratory fitness and exercise training on cerebrovascular blood flow and reactivity: A systematic review with meta-analyses", Am. J. Phys. Heart Circulat. Physiol., 321(1), H59-H76. https://doi.org/10.1152/ajpheart.00880.2020.
  116. Sully, R.E., Moore, C.J., Garelick, H., Loizidou, E., Podoleanu, A.G. and Gubala, V. (2021), "Nanomedicines and microneedles: A guide to their analysis and application", Anal. Meth., https://doi.org/10.1039/D1AY00954K.
  117. Tang, Y., Liu, S., Deng, Y., Zhang, Y., Yin, L. and Zheng, W. (2021), "An improved method for soft tissue modeling", Biomed. Signal Pr. Control., 65, 102367. https://doi.org/10.1016/j.bspc.2020.102367.
  118. Tezel, G., Timur, S.S., Kuralay, F., Gursoy, R.N., Ulubayram, K., O ner, L. and Eroglu, H. (2021), "Current status of micro/nanomotors in drug delivery", J. Drug Target., 29(1), 29-45. https://doi.org/10.1080/1061186X.2020.1797052.
  119. van der Kleij, L.A., Petersen, E.T., Siebner, H.R., Hendrikse, J., Frederiksen, K.S., Sobol, N.A., Hasselbalch, S.G. and Garde, E. (2018), "The effect of physical exercise on cerebral blood flow in Alzheimer's disease", NeuroImage: Clinical, 20, 650-654. https://doi.org/10.1016/j.nicl.2018.09.003.
  120. Varalakshmi, B., Karpagam, T., Anand, A.V. and Balamuralikrishnan, B. (2022), Nanoscale Smart Drug Delivery Systems and Techniques of Drug Loading to Nanoarchitectures, Springer.
  121. Vargason, A.M., Anselmo, A.C. and Mitragotri, S. (2021), "The evolution of commercial drug delivery technologies", Nature Biomed. Eng., 5(9), 951-967. https://doi.org/10.1038/s41551-021-00698-w.
  122. Wang, M., Yang, M., Fang, Z., Wang, M. and Wu, Q. (2022a), "A practical feeder planning model for urban distribution system", IEEE T. Power Syst., 1-1. https://doi.org/10.1109/TPWRS.2022.3170933.
  123. Wang, P., Gao, Z., Pan, F., Moradi, Z., Mahmoudi, T. and Khadimallah, M.A. (2022b), "A couple of GDQM and iteration techniques for the linear and nonlinear buckling of bidirectional functionally graded nanotubes based on the nonlocal strain gradient theory and high-order beam theory", Eng. Anal. Bound. Elem., 143, 124-136. https://doi.org/10.1016/j.enganabound.2022.06.007.
  124. Wang, Y., Li, Z. and Hu, Q. (2021), "Emerging self-regulated micro/nano drug delivery devices: A step forward towards intelligent diagnosis and therapy", Nano Today, 38, 101127. https://doi.org/10.1016/j.nantod.2021.101127.
  125. Wang, Z., Yu, S., Xiao, Z. and Habibi, M. (2020), "Frequency and buckling responses of a high-speed rotating fiber metal laminated cantilevered microdisk", Mech. Adv. Mater. Struct., 1-14. https://doi.org/10.1080/15376494.2020.1824284.
  126. Wu, J. and Habibi, M. (2021), "Dynamic simulation of the ultrafast-rotating sandwich cantilever disk via finite element and semi-numerical methods", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-021-01396-6.
  127. Xu, W., Pan, G., Moradi, Z. and Shafiei, N. (2021), "Nonlinear forced vibration analysis of functionally graded non-uniform cylindrical microbeams applying the semi-analytical solution", Compos. Struct., 114395. https://doi.org/10.1016/j.compstruct.2021.114395.
  128. Yu, X., Maalla, A. and Moradi, Z. (2022), "Electroelastic high-order computational continuum strategy for critical voltage and frequency of piezoelectric NEMS via modified multi-physical couple stress theory", Mech. Syst. Signal Pr., 165, 108373. https://doi.org/10.1016/j.ymssp.2021.108373.
  129. Zare, R., Najaafi, N., Habibi, M., Ebrahimi, F. and Safarpour, H. (2020), "Influence of imperfection on the smart control frequency characteristics of a cylindrical sensor-actuator GPLRC cylindrical shell using a proportional-derivative smart controller", Smart Struct. Syst., 26(4), 469-480. https://doi.org/10.12989/sss.2020.26.4.469.
  130. Zhang, H., Wang, H., Niu, B., Zhang, L. and Ahmad, A.M. (2021a), "Sliding-mode surface-based adaptive actor-critic optimal control for switched nonlinear systems with average dwell time", Inform. Sci., 580, 756-774. https://doi.org/10.1016/j.ins.2021.08.062.
  131. Zhang, H., Zhao, X., Wang, H., Zong, G. and Xu, N. (2022a), "Hierarchical sliding-mode surface-based adaptive Actor& #x2013; critic optimal control for switched nonlinear systems with unknown perturbation", IEEE T. Neural Netw. Learn. Syst., 1-13. https://doi.org/10.1109/TNNLS.2022.3183991.
  132. Zhang, H., Zou, Q., Ju, Y., Song, C. and Chen, D. (2022b), "Distance-based support vector machine to predict DNA N6-methyladenine modification", Curr. Bioinform., 17(5), 473-482. https://doi.org/10.2174/1574893617666220404145517.
  133. Zhang, Y., Wang, Z., Tazeddinova, D., Ebrahimi, F., Habibi, M. and Safarpour, H. (2021b), "Enhancing active vibration control performances in a smart rotary sandwich thick nanostructure conveying viscous fluid flow by a PD controller", Wave. Random Complex Med., 1-24. https://doi.org/10.1080/17455030.2021.1948627.
  134. Zhao, Y., Moradi, Z., Davoudi, M. and Zhuang, J. (2021), "Bending and stress responses of the hybrid axisymmetric system via state-space method and 3D-elasticity theory", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-020-01242-1.
  135. Zhou, C., Zhao, Y., Zhang, J., Fang, Y. and Habibi, M. (2020), "Vibrational characteristics of multi-phase nanocomposite reinforced circular/annular system", Adv. Nano Res., 9(4), 295-307. https://doi.org/10.12989/anr.2020.9.4.295.