DOI QR코드

DOI QR Code

Thermal buckling of rectangular sandwich plates with advanced hybrid SMA/CNT/graphite/epoxy composite face sheets

  • Saeed Kamarian (Department of Mechanical Engineering, Changwon National University) ;
  • Jung-Il Song (Department of Mechanical Engineering, Changwon National University)
  • 투고 : 2022.04.07
  • 심사 : 2022.06.17
  • 발행 : 2023.03.25

초록

The present study follows three main goals. First, an analytical solution with high accuracy is developed to assess the effects of embedding pre-strained shape memory alloy (SMA) wires on the critical buckling temperatures of rectangular sandwich plates made of soft core and graphite fiber/epoxy (GF/EP) face sheets based on piecewise low-order shear deformation theory (PLSDT) using Brinson's model. As the second goal, this study compares the effects of SMAs on the thermal buckling of sandwich plates with those of carbon nanotubes (CNTs). The glass transition temperature is considered as a limiting factor. For each material, the effective ranges of operating temperature and thickness ratio are determined for real situations. The results indicate that depending on the geometric parameters and thermal conditions, one of the SMAs and CNTs may outperform the other. The third purpose is to study the thermal buckling of sandwich plates with advanced hybrid SMA/CNT/GF/EP composite face sheets. It is shown that in some circumstances, the co-incorporation of SMAs and CNTs leads to an astonishing enhancement in the critical buckling temperatures of sandwich plates.

키워드

과제정보

This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science Education (2018R1A6A1A03024509 and 2021R1A2B5B03002355)

참고문헌

  1. Asadi, H., Akbarzadeh, A.H., Chen, Z.T. and Aghdam, M.M (2015), "Enhanced thermal stability of functionally graded sandwich cylindrical shells by shape memory alloys", Smart Mater. Struct., 24(4), 045022. https://doi.org/10.1088/0964-1726/24/4/045022. 
  2. Babu, C.S. and Kant, T. (2000), "Refined higher order finite element models for thermal buckling of laminated composite and sandwich plates", J. Therm. Stress., 23(2), 111-130. https://doi.org/10.1080/014957300280489. 
  3. Barai, P. and Weng G.J. (2011), "A theory of plasticity for carbon nanotube reinforced composites", Int. J. Plast., 27 (4), 539-559. https://doi.org/10.1016/j.ijplas.2010.08.006. 
  4. Bendenia, N., Zidour, M., Bousahla A.A, Bourada F., Tounsi, A., Benrahou, K.H., Adda Bedia E.A., Mahmoud, S.R. and Tounsi, A. (2020), "Deflections, stresses and free vibration studies of FG-CNT reinforced sandwich plates resting on Pasternak elastic foundation", Comput. Concr., 26(3), 213-226. https://doi.org/10.12989/cac.2020.26.3.213. 
  5. Bhaskar, J., Sharma A.K., Bhattacharya B. and Adhikari, S. (2020), "A review on shape memory alloy reinforced polymer composite materials and structures", Smart Mater. Struct., 29(7), 073001. https://doi.org/10.1088/1361-665X/ab8836. 
  6. Birman, V. and G.A. Kardomateas (2018), "Review of current trends in research and applications of sandwich structures", Compos. Part B Eng., 142, 221-240. https://doi.org/10.1016/j.compositesb.2018.01.027. 
  7. Brinson, L.C. (1993), "One-dimensional constitutive behavior of shape memory alloys: Thermomechanical derivation with nonconstant material functions and redefined martensite internal variable," J. Intell. Mater. Syst. Struct., 4(2), 229-242. https://doi.org/10.1177%2F1045389X9300400213.  https://doi.org/10.1177%2F1045389X9300400213
  8. Daikh, A.A., Drai, A., Bensaid, I., Houari M.S.A. and Tounsi, A. (2021), "On vibration of functionally graded sandwich nanoplates in the thermal environment", J. Sandw. Struct. Mater., 23(6), 2217-2244. https://doi.org/10.1177%2F1099636220909790.  https://doi.org/10.1177%2F1099636220909790
  9. Dat, Ngo Dinh, Tran Quoc Quan, and Nguyen Dinh Duc. (2021), "Nonlinear thermal dynamic buckling and global optimization of smart sandwich plate with porous homogeneous core and carbon nanotube reinforced nanocomposite layers", Eur. J. Mech. A Solids, 90, 104351. https://doi.org/10.1016/j.euromechsol.2021.104351. 
  10. Ebrahimi, F. and Farazmandnia N. (2018), "Thermal buckling analysis of functionally graded carbon nanotube-reinforced composite sandwich beams", Steel Compos. Struct., 27(2), 149-159. https://doi.org/10.12989/scs.2018.27.2.149. 
  11. Gao, X., Burton, D., Turner T. L. and Brinson L. C. (2006), "Finite element analysis of adaptive-stiffening and shape-control SMA hybrid composites", Smart Struct. Mater., 5761, 406-416. https://doi.org/10.1115/1.2203108. 
  12. Garg, A., Chalak, H.D., Belarbi, M.O., Zenkour, A.M. and Sahoo, R. (2021), "Estimation of carbon nanotubes and their applications as reinforcing composite materials-an engineering review", Compos. Struct., 272, 114234. https://doi.org/10.1016/j.compstruct.2021.114234. 
  13. Kamarian, S., Bodaghi, M., Barbaz-Isfahani R. and Song, J-I (2020), "A comparison between the effects of shape memory alloys and carbon nanotubes on the thermal buckling of laminated composite beams", Mech. Based Des. Struct., 1-24. https://doi.org/10.1080/15397734.2020.1776131. 
  14. Kamarian, S., Bodaghi M., Barbaz Isfahani, R. Shakeri M. and Yas, M.H. (2021a), "Influence of carbon nanotubes on thermal expansion coefficient and thermal buckling of polymer composite plates: Experimental and numerical investigations", Mech. Based Des. Struct., 49(2), 217-232. https://doi.org/10.1080/15397734.2019.1674664. 
  15. Kamarian, S., Bodaghi, M., Barbaz-Isfahani R. and Song, J.I. (2021b), "Thermal buckling analysis of sandwich plates with soft-core and CNT-Reinforced composite face sheets", J. Sandw. Struct. Mater., 23(8), 3606-3644. https://doi.org/10.1177%2F1099636220935557.  https://doi.org/10.1177%2F1099636220935557
  16. Kamarian, S. and Song J.I. (2022), "Thermal buckling of advanced hybrid composite plates in the co-presence of CNTs and SMAs", Mech. Adv. Mater. Struct., Published online. https://doi.org/10.1080/15376494.2021.2023921. 
  17. Katariya, P.V., Panda S.K., Hirwani C.K., Mehar K. and Thakare, O. (2017), "Enhancement of thermal buckling strength of laminated sandwich composite panel structure embedded with shape memory alloy fibre", Smart Struct. Syst., 20 (5), 595-605. 
  18. Lal, A. and Markad K. (2021), "Thermal post buckling analysis of smart SMA hybrid sandwich composite plate", Polym. Polym. Compos., 29(9), S344-S360. https://doi.org/10.1177%2F09673911211001276.  https://doi.org/10.1177%2F09673911211001276
  19. Lecce, L. and Concilio, A. (2015), Shape Memory Alloy Engineering: For Aerospace, Structural and Biomedical Applications, Elsevier, New York, U.S.A. 
  20. Li, X., Yu, K., Han J., Zhao R. and Wu, Y. (2015), "A piecewise shear deformation theory for free vibration of composite and sandwich panels", Compos. Struct., 124, 111-119. https://doi.org/10.1016/j.compstruct.2015.01.007. 
  21. Li, X., Yu, k. and Zhao, R. (2018), "Thermal post-buckling and vibration analysis of a symmetric sandwich beam with clamped and simply supported boundary conditions", Arch. Appl. Mech., 88(4), 543-561. https://doi.org/10.1007/s00419-017-1326-x. 
  22. Mehar, K., Panda,S. K., Devarajan Y. and Choubey G. (2019), "Numerical buckling analysis of graded CNT-reinforced composite sandwich shell structure under thermal loading", Compos. Struct., 216, 406-414. https://doi.org/10.1016/j.compstruct.2019.03.002. 
  23. Mekerbi, M., Benyoucef, S., Mahmoudi, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2021), "Thermodynamic behavior of functionally graded sandwich plates resting on different elastic foundation and with various boundary conditions", J. Sandw. Struct. Mater., 23(3), 1028-1057. https://doi.org/10.1177%2F1099636219851281.  https://doi.org/10.1177%2F1099636219851281
  24. Nejati, M., Ghasemi-Ghalebahman A., Soltanimaleki A., Dimitri R. and Tornabene, F. (2019), "Thermal vibration analysis of SMA hybrid composite double curved sandwich panels", Compos. Struct., 224, 111035. https://doi.org/10.1016/j.compstruct.2019.111035. 
  25. Reddy, J.N. (2003), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC press, Boca Raton. 
  26. Sankar, A., Natarajan S., Merzouki T. and Ganapathi M. (2017), "Nonlinear dynamic thermal buckling of sandwich spherical and conical shells with CNT reinforced facesheets", Int. J. Struct. Stabil. Dyn., 17(9), 1750100. https://doi.org/10.1142/S0219455417501000. 
  27. Siddiqui, N.A., Li, E.L., Sham, M.L., Tang, B.Z. Gao, S.L., Mader, E. and Kim J.K. (2010), "Tensile strength of glass fibres with carbon nanotube-epoxy nanocomposite coating: effects of CNT morphology and dispersion state", Compos. Part A, 41(4), 539-548. https://doi.org/10.1016/j.compositesa.2009.12.011. 
  28. Tsoi, K.A., Stalmans, R., Schrooten, J., Wevers, M. and Mai, Y.W. (2003), "Impact damage behaviour of shape memory alloy composites", Mater. Sci. Eng. A, 342(1-2), 207-215. https://doi.org/10.1016/S0921-5093(02)00317-9. 
  29. Tung H.V. and Long, V.T. (2019) "Buckling and postbuckling of CNT-reinforced composite sandwich cylindrical panels subjected to axial compression in thermal environments", Vietnam J. Mech., 41(3), 217-231. https://doi.org/10.15625/0866-7136/13673. 
  30. Watanabe, N., Sato, H. and Hishi, Y. (1997), "Thermal buckling behavior in Al honeycomb sandwich plates with very thin cfrp faces", Proceedings of the 38th Structures, Structural Dynamics, And Materials Conference, Kissimmee, FL, U.S.A., April. 
  31. Yas, M.H., Basati F. and Kamarian, S. (2021), "Thermal buckling of trapezoidal composite laminated plates with embedded shape memory alloys", Polym. Compos., 42(7), 3349-3362. https://doi.org/10.1002/pc.26063. 
  32. Zhai, Y., Su, J. and Liang, S. (2020), "Free vibration and buckling analysis of composite sandwich plates in thermal environment", J. Sandw. Struct. Mater., 22(8), 2604-2628. https://doi.org/10.1177%2F1099636218795375.  https://doi.org/10.1177%2F1099636218795375