DOI QR코드

DOI QR Code

Al-Mg-X (X=Cr, Si)합금의 기계적성질에 미치는 결정립크기와 시효조건의 영향

Effect of Grain Size and Aging Conditions on Mechanical Properties of Al-Mg-X (X=Cr,Si) Alloy

  • 한창석 (호서대학교 자동차ICT공학과) ;
  • 이찬우 (호서대학교 자동차ICT공학과)
  • Chang-Suk Han (Dept. of ICT Automotive Engineering, Hoseo University) ;
  • Chan-Woo Lee (Dept. of ICT Automotive Engineering, Hoseo University)
  • 투고 : 2023.02.10
  • 심사 : 2023.03.15
  • 발행 : 2023.03.30

초록

In this study, the mechanical properties of the Al-Mg-X (X=Cr, Si) alloy, which clearly showed the influence of the specimen and grain size, were investigated by changing the specimen size extensively. In addition, the effect on the specimen size, grain size and aging condition on the mechanical properties of the grain refining alloy according to the addition of Cr was clarified, and the relationship between these factors was studied. As the specimen size decreased, the yield stress decreased and the fracture elongation increased. This change was evident in alloys with coarse grain sizes. Through FEM analysis, it was confirmed that the plastic deformation was localized in the parallel part of specimen S2. Therefore, when designing a tensile specimen of plate material, the W/L balance should be considered along with the radius of curvature of the shoulder. In the case of under-aged materials of alloys with coarse grain size, the fracture pattern changed from intergranular fracture to transgranular fracture as W/d decreased, and δ increased. This is due to the decrease in the binding force between grains due to the decrease in W. In the specimen with W/d > 40 or more, intergranular fracture occurred, and local elongation did not appear. Under-aged materials of alloys with fine grain size always had transgranular fracture over a wide range of W/d = 70~400. As W/d decreased, δ increased, but the change was not as large as that of alloys with coarse grain sizes. Compared to the under-aged material, the peak-aged material did not show significant dependence on the specimen size of σ0.2 and δ.

키워드

참고문헌

  1. T. Soysal and S. Kou : J. Mater. Pro. Tech., 266 (2019) 421. https://doi.org/10.1016/j.jmatprotec.2018.11.022
  2. X. Dong, H. Yang, X. and S. Ji : J. Alloys & Comp., 773 (2019) 86.
  3. S. P. Rodrigues, C. F. A. Alves, A. Cavaleiro and S. Carvalho : Appl. Surf. Sci., 422 (2017) 430.
  4. K. Shimizu and K. Nisancioglu : ECS Electro. Lett. EEL, 3 (2014) C29.
  5. P. J. Mane and K. L. Vishnu Kumar : Pro. Eng ., 97 (2014) 642.
  6. R. Smerd, S. Winkler, C. Salisbury, M. Worswick, D. Lloyd, and M. Finn : Inter. J. Impact Eng., 32 (2005) 541.
  7. Z. H. Meng, S. Y. Huang, and J. H. Hu : Adv. Mater. Res., AMR, 189/193 (2011) 2522.
  8. K. Ogawa and F. Sugiyama : J. Soc. Mat. Sci., Japan, 55 (2006) 819.
  9. D. Masashi, K. Hidetoshi, and T. Hiroshi : J. Soc. Mat. Sci., Japan, 53 (2004) 1240.
  10. C. H. Bae, J. H. Lee, and C. S. Han : Kor. J. Mater. Res., 20 (2010) 37.
  11. E. V. Mortsell, I. Westermann, C. D. Marioara, K. O. Pedersen, S. J. Andersen, J. H. Royset, and H. R. Bjorn : Metals, 9 (2019) 1276.
  12. N. R. Bochvar, L. L. Rokhlin, and I. E. Tarytina : Inorganic materials, applied research, 10 (2019) 420.
  13. J. Hu, J. Teng, X. Ji, D. Fu, W. Zhang, and H. Zhang : Mater. Sci. & Eng. properties, microstructure and processing. A, Structural materials, 695 (2017) 35.
  14. N. Haghdadi, A. Hanzaki, M. Kawasaki, A. B. Phillion, and P. D. Hodgson : Adv. Eng. Mater., 19 (2017) 1700064.
  15. H. Zheng, Y. Peng, L. Yan, and R. Zhu : Chinese J. Mech. Eng., 54 (2018) 107.
  16. K. Mori, T. Ishizaki, and A. Serizawa : J. Jpn. Inst. Light Metals, 68 (2018) 537.
  17. A. L. Wei, X. H. Liu, K. Y. Zhang , and W. Liang : Adv. Mater. Res., AMR, 652/654 (2013) 1059.
  18. H. Miyahara, Y. Maruno, and K. Ogi : Mater. Trans., 46 (2005) 950.
  19. Y. Maruno, H. Miyahara, H. Noguchi, and K. Ogi : Mater. Trans., 45 (2004) 839.
  20. S. Miyazaki, K. Shibata, and H. Fujita : Acta Met., 27 (1979) 855.