DOI QR코드

DOI QR Code

Neuroimaging Assessment of the Therapeutic Mechanism of Acupuncture and Bee Venom Acupuncture in Patients with Idiopathic Parkinson's Disease: A Double-blind Randomized Controlled Trial

  • Young-Eun Lee (Department of Clinical Korean Medicine, Graduate School, Kyung Hee University) ;
  • Seung-Yeon Cho (Stroke and Neurological Disorders Center, Kyung Hee University College of Korean Medicine, Kyung Hee University Hospital at Gangdong) ;
  • Han-Gyul Lee (Department of Cardiology and Neurology, Kyung Hee University College of Korean Medicine, Kyung Hee University Medical Center) ;
  • Seungwon Kwon (Department of Cardiology and Neurology, Kyung Hee University College of Korean Medicine, Kyung Hee University Medical Center) ;
  • Woo-Sang Jung (Department of Cardiology and Neurology, Kyung Hee University College of Korean Medicine, Kyung Hee University Medical Center) ;
  • Sang-Kwan Moon (Department of Cardiology and Neurology, Kyung Hee University College of Korean Medicine, Kyung Hee University Medical Center) ;
  • Jung-Mi Park (Stroke and Neurological Disorders Center, Kyung Hee University College of Korean Medicine, Kyung Hee University Hospital at Gangdong) ;
  • Chang-Nam Ko (Stroke and Neurological Disorders Center, Kyung Hee University College of Korean Medicine, Kyung Hee University Hospital at Gangdong) ;
  • Seong-Uk Park (Stroke and Neurological Disorders Center, Kyung Hee University College of Korean Medicine, Kyung Hee University Hospital at Gangdong)
  • 투고 : 2023.10.20
  • 심사 : 2023.11.15
  • 발행 : 2023.12.01

초록

Objectives: The purpose of this study was to explore the therapeutic mechanism of acupuncture and bee venom acupuncture (BVA) in patients with idiopathic Parkinson's disease (IPD) using positron emission tomography (PET) and arterial spin labeling (ASL). Methods: Patients with IPD who received a stable dose of anti-parkinsonian medication for at least 4 weeks were recruited and randomly divided into one of two groups: treatment and control. The treatment group (11 subjects) received acupuncture and BVA at acupoints, and the control group (9 subjects) received sham acupuncture and normal saline injections at non-acupoints, twice per week for 12 weeks. The patients were examined using PET and ASL at baseline and after the 12-week treatment. In addition, age- and sex-matched healthy subjects without neurological symptoms and history were recruited to compare ASL data of patients with IPD. Results: PET results revealed that striatal dopamine transporter binding increased in each group after 12 weeks. Although the change was larger in the treatment group, the difference was not statistically significant. In ASL results, the treatment group exhibited hyperperfusion in specific regions compared with the healthy control group. After 12 weeks' intervention, hyperperfusion regions were recovered only in the treatment group. In contrast, significant changes were not found in hyperperfusion regions in the control group after 12 weeks. Conclusions: Our findings suggest that the therapeutic mechanisms of acupuncture and BVA in IPD are different from placebo and operate by altering dopamine availability and recovering hyperactivity in cerebral blood flow.

키워드

과제정보

This work was supported by the Korea Institute of Oriental Medicine [grant number KSN2211010].

참고문헌

  1. de Lau, L. M. & Breteler, M. M. (2006). Epidemiology of parkinson's disease. Lancet Neurol. 5(6). 525-535. http://doi.org/10.1016/S1474-4422(06)70471-9
  2. Yang, J. L., Chen, J. S., Yang, Y. F., Chen, J. C., Lin, C. H., Chang, R. S., et al. (2011). Neuroprotection effects of retained acupuncture in neurotoxin-induced parkinson's disease mice. Brain Behav Immun. 25(7). 1452-1459. http://doi.org/10.1016/j.bbi.2011.05.012
  3. Doo, A. R., Kim, S. T., Kim, S. N., Moon, W., Yin, C. S., Chae, Y., et al. (2010). Neuroprotective effects of bee venom pharmaceutical acupuncture in acute 1-methyl -4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of parkinson's disease. Neurol Res. 32 Suppl 1. 88-91. http://doi.org/10.1179/016164109X12537002794282
  4. Ye, M., Chung, H. S., Lee, C., Hyun Song, J., Shim, I., Kim, Y. S., et al. (2016). Bee venom phospholipase a2 ameliorates motor dysfunction and modulates microglia activation in parkinson's disease alpha-synuclein transgenic mice. Exp Mol Med. 48(7). e244. http://doi.org/10.1038/emm.2016.49
  5. Cho, S. Y., Shim, S. R., Rhee, H. Y., Park, H. J., Jung, W. S., Moon, S. K., et al. (2012). Effectiveness of acupuncture and bee venom acupuncture in idiopathic parkinson's disease. Parkinsonism Relat Disord. 18(8). 948-952. http://doi.org/10.1016/j.parkreldis.2012.04.030
  6. Doo, K. H., Lee, J. H., Cho, S. Y., Jung, W. S., Moon, S. K., Park, J. M., et al. (2015). A prospective open-label study of combined treatment for idiopathic parkinson's disease using acupuncture and bee venom acupuncture as an adjunctive treatment. Journal of Alternative and Complementary Medicine. 21(10). 598-603. http://doi.org/10.1089/acm.2015.0078
  7. Kim, S. N., Doo, A. R., Park, J. Y., Bae, H., Chae, Y., Shim, I., et al. (2011). Acupuncture enhances the synaptic dopamine availability to improve motor function in a mouse model of parkinson's disease. PLoS One. 6(11). e27566. http://doi.org/10.1371/journal.pone.0027566
  8. Yeo, S., Choe, I. H., van den Noort, M., Bosch, P., Jahng, G. H., Rosen, B., et al. (2014). Acupuncture on GB34 activates the precentral gyrus and prefrontal cortex in parkinson's disease. BMC Complement Altern Med. 14. 336. http://doi.org/10.1186/1472-6882-14-336
  9. Yeo, S., Lim, S., Choe, I. H., Choi, Y. G., Chung, K. C., Jahng, G. H., et al. (2012). Acupuncture stimulation on GB34 activates neural responses associated with parkinson's disease. CNS Neurosci Ther. 18(9). 781-790. http://doi.org/10.1111/j.1755-5949.2012.00363.x
  10. Loane, C. & Politis, M. (2011). Positron emission tomography neuroimaging in parkinson's disease. Am J Transl Res. 3(4). 323-341.
  11. Amorim, B. J.Camargo, E. C. & Etchebehere, E. C. (2007). Regional CBF changes in parkinson's disease: The importance of functional neuroimaging analyses. Eur J Nucl Med Mol Imaging. 34(9). 1455-1457. http://doi.org/10.1007/s00259-007-0411-8
  12. Tupala, E., Kuikka, J. T., Hall, H., Bergstrom, K., Sarkioja, T., Rasanen, P., et al. (2001). Measurement of the striatal dopamine transporter density and heterogeneity in type 1 alcoholics using human whole hemisphere autoradiography. Neuroimage. 14(1). 87-94. http://doi.org/10.1006/nimg.2001.0793
  13. Fernandez-Seara, M. A., Aznarez-Sanado, M., Mengual, E., Irigoyen, J., Heukamp, F. & Pastor, M. A. (2011). Effects on resting cerebral blood flow and functional connectivity induced by metoclopramide: A perfusion MRI study in healthy volunteers. Br J Pharmacol. 163(8). 1639-1652. http://doi.org/10.1111/j.1476-5381.2010.01161.x
  14. Detre, J. A. & Wang, J. J. (2002). Technical aspects and utility of fmri using bold and asl. Clinical Neurophysiology. 113(5). 621-634. http://doi.org/10.1016/S1388-2457(02)00038-X
  15. Hughes, A. J.Daniel, S. E.Kilford, L. & Lees, A. J. (1992). Accuracy of clinical diagnosis of idiopathic parkinson's disease: A clinico -pathological study of 100 cases. J Neurol Neurosurg Psychiatry. 55(3). 181-184. http://doi.org/10.1136/jnnp.55.3.181
  16. Hoehn, M. M. & Yahr, M. D. (1967). Parkinsonism: Onset, progression and mortality. Neurology. 17(5). 427-442. http://doi.org/10.1212/wnl.17.5.427
  17. Jin, S., Oh, M., Oh, S. J., Chung, S. J., Lee, C. S. & Kim, J. S. (2012). Differential diagnosis of parkinsonism using dual-phase F-18 FP-CIT PET imaging. European Journal of Nuclear Medicine and Molecular Imaging. 47(1). 44-51. http://doi.org/10.1007/s13139-012-0182-4.
  18. Edelman, R. R., Siewert, B., Darby, D. G., Thangaraj, V., Nobre, A. C., Mesulam, M. M., et al. (1994). Qualitative mapping of cerebral blood-flow and functional localization with echo-planar MR-imaging and signal targeting with alternating radio-frequency. Radiology. 192(2). 513-520. http://doi.org/10.1148/radiology.192.2.8029425
  19. Golay, X.Petersen, E. T. & Hui, F. (2005). Pulsed star labeling of arterial regions (PULSAR): A robust regional perfusion technique for high field imaging. Magnetic Resonance in Medicine. 53(1). 15-21. http://doi.org/10.1002/mrm.20338
  20. Kim, S. M., Kim, M. J., Rhee, H. Y., Ryu, C. W., Kim, E. J., Petersen, E. T., et al. (2013). Regional cerebral perfusion in patients with alzheimer's disease and mild cognitive impairment: Effect of APOE epsilon4 allele. Neuroradiology. 55(1). 25-34. http://doi.org/10.1007/s00234-012-1077-x
  21. Wang, Z., Aguirre, G. K., Rao, H., Wang, J., Fernandez-Seara, M. A., Childress, A. R., et al. (2008). Empirical optimization of asl data analysis using an asl data processing toolbox: Asltbx. Magnetic Resonance Imaging. 26(2). 261-269. http://doi.org/10.1016/j.mri.2007.07.003
  22. Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. Neuroimage. 38(1). 95-113. http://doi.org/10.1016/j.neuroimage. 2007.07.007
  23. Berti, V.Pupi, A. & Mosconi, L. (2011). PET/CT in diagnosis of movement disorders. Ann N Y Acad Sci. 1228(93-108. http://doi.org/ 10.1111/j.1749-6632.2011.06025.x
  24. Rui, G., Guangjian, Z., Yong, W., Jie, F., Yanchao, C., Xi, J., et al. (2013). High frequency electro-acupuncture enhances striatum DAT and D1 receptor expression, but decreases D2 receptor level in 6-OHDA lesioned rats. Behav Brain Res. 237. 263-269. http://doi.org/10.1016/j.bbr.2012.09.047
  25. Kim, S. N., Doo, A. R., Park, J. Y., Choo, H. J., Shim, I., Park, J. J., et al. (2014). Combined treatment with acupuncture reduces effective dose and alleviates adverse effect of L-dopa by normalizing parkinson's disease-induced neurochemical imbalance. Brain Res. 1544. 33-44. http://doi.org/10.1016/j.brainres.2013.11.028
  26. Lidstone, S. C., Schulzer, M., Dinelle, K., Mak, E., Sossi, V., Ruth, T. J., et al. (2010). Effects of expectation on placebo-induced dopamine release in parkinson disease. Arch Gen Psychiatry. 67(8). 857-865. http://doi.org/10.1001/archgenpsychiatry.2010.88
  27. Hsu, J. L., Jung, T. P., Hsu, C. Y., Hsu, W. C., Chen, Y. K., Duann, J. R., et al. (2007). Regional CBF changes in parkinson's disease: A correlation with motor dysfunction. European Journal of Nuclear Medicine and Molecular Imaging. 34(9). 1458-1466. http://doi.org/10. 1007/s00259-006-0360-7 https://doi.org/10.1007/s00259-006-0360-7
  28. Alexander, G. E.Crutcher, M. D. & DeLong, M. R. (1990). Basal ganglia-thalamocortical circuits: Parallel substrates for motor, oculomotor, "prefrontal" and "limbic" functions. Prog Brain Res. 85. 119-146. https://doi.org/10.1016/S0079-6123(08)62678-3
  29. Dogali, M., Fazzini, E., Kolodny, E., Eidelberg, D., Sterio, D., Devinsky, O., et al. (1995). Stereotactic ventral pallidotomy for parkinson's disease. Neurology. 45(4). 753-761. http://doi.org/10.1212/wnl.45.4.753
  30. Eidelberg, D., Moeller, J. R., Ishikawa, T., Dhawan, V., Spetsieris, P., Silbersweig, D., et al. (1996). Regional metabolic correlates of surgical outcome following unilateral pallidotomy for parkinson's disease. Annals of Neurology. 39(4). 450-459. http://doi.org/10.1002/ana.410390407
  31. Antonini, A., Vontobel, P., Psylla, M., Gunther, I., Maguire, P. R., Missimer, J., et al. (1995). Complementary positron emission tomographic studies of the striatal dopaminergic system in parkinson's disease. Arch Neurol. 52(12). 1183-1190. http://doi.org/10.1001/archneur.1995. 00540360061017
  32. Zanjani, A.Zakzanis, K. K.Daskalakis, Z. J. & Chen, R. (2015). Repetitive transcranial magnetic stimulation of the primary motor cortex in the treatment of motor signs in parkinson's disease: A quantitative review of the literature. Mov Disord. 30(6). 750-758. http://doi.org/10.1002/mds.26206
  33. Fernandez-Seara, M. A., Mengual, E., Vidorreta, M., Aznarez-Sanado, M., Loayza, F. R., Villagra, F., et al. (2012). Cortical hypoperfusion in parkinson's disease assessed using arterial spin labeled perfusion MRI. Neuroimage. 59(3). 2743-2750. http://doi.org/10.1016/j.neuroimage.2011.10.033
  34. Imon, Y.Matsuda, H.Ogawa, M.Kogure, D. & Sunohara, N. (1999). Spect image analysis using statistical parametric mapping in patients with Parkinson's disease. Journal of Nuclear Medicine. 40(10). 1583-1589.
  35. Kikuchi, A., Takeda, A., Kimpara, T., Nakagawa, M., Kawashima, R., Sugiura, M., et al. (2001). Hypoperfusion in the supplementary motor area, dorsolateral prefrontal cortex and insular cortex in Parkinson's disease. Journal of the Neurological Sciences. 193(1). 29-36. http://doi.org/10.1016/S0022-510x(01)00641-4
  36. Melzer, T. R., Watts, R., MacAskill, M. R., Pearson, J. F., Rueger, S., Pitcher, T. L., et al. (2011). Arterial spin labelling reveals an abnormal cerebral perfusion pattern in parkinson's disease. Brain. 134. 845-855. http://doi.org/10.1093/brain/awq377
  37. Theysohn, N., Choi, K. E., Gizewski, E. R., Wen, M., Rampp, T., Gasser, T., et al. (2014). Acupuncture-related modulation of pain-associated brain networks during electrical pain stimulation: A functional magnetic resonance imaging study. Journal of Alternative and Complementary Medicine. 20(12). 893-900. http://doi.org/10.1089/acm. 2014.0105
  38. Ballanger, B.Poisson, A.Broussolle, E. & Thobois, S. (2012). Functional imaging of non-motor signs in parkinson's disease. Journal of the Neurological Sciences. 315(1-2). 9-14. http://doi.org/10.1016/j.jns.2011.11.008
  39. de la Fuente-Fernandez, R.Schulzer, M. & Stoessel, A. J. (2002). The placebo effect in neurological disorders. Lancet Neurology. 1(2). 85-91. http://doi.org/10.1016/S1474-4422(02)00038-8
  40. Goetz, C. G., Wuu, J., McDermott, M. P., Adler, C. H., Fahn, S., Freed, C. R., et al. (2008). Placebo response in parkinson's disease: Comparisons among 11 trials covering medical and surgical interventions. Movement Disorders. 23(5). 690-699. http://doi.org/10.1002/mds.21894