DOI QR코드

DOI QR Code

Bending performance and calculation of reinforced beam with hybrid fiber and CaCO3 whisker

  • Li Li (College of Water Resources and Architectural Engineering, Northwest A&F University) ;
  • Yapeng Qin (College of Water Resources and Architectural Engineering, Northwest A&F University) ;
  • Mingli Cao (School of Civil Engineering, Dalian University of Technology) ;
  • Junfeng Guan (School of Civil Engineering and Communication, North China University of Water Resources and Electric Power) ;
  • Chaopeng Xie (School of Civil Engineering and Communication, North China University of Water Resources and Electric Power)
  • 투고 : 2021.09.22
  • 심사 : 2022.12.02
  • 발행 : 2023.03.25

초록

In this paper, the bending performance of a MSFRHPC (containing steel fiber, polyvinyl alcohol (PVA) fiber, and CW)-reinforced beam was studied for the first time. Introducing a multiscale fiber system increased the first crack load (up to 150%), yield load (up to 50%), and peak load (up to 15%) of reinforced beams. The multiscale fiber system delays cracking of the reinforced beam, reduces crack width of the reinforced beam in normal use, and improves the durability of the beam. Considering yield load and peak load, the reinforcing effect of multiscale fiber on the high-reinforcement ratio beam (1.00%) is better than that on the low-reinforcement ratio beam (0.57%). Introducing fibers slowed the development of cracks in the reinforced beam under bending. With the added hybrid fiber, the deformation concentration of reinforced beams after yield was more significant with concentration in 1 or 2 cracks. A model for predicting the flexural capacity of MSFRHPC-reinforced beams was proposed, considering the action of multiscale hybrid fibers. This research is helpful for structure application of MSFRHPC-containing CW.

키워드

과제정보

The authors acknowledge the support of Natural Science Foundation of China under Grant No. 52109168, No. 51678111, No. 51779095, Natural Science Basic Research Plan in Shaanxi Province of China (2021JM-108), and the Science Technology Innovation Talents in Universities of Henan Province (20HASTIT013).

참고문헌

  1. Ahangarnazhad, B.H., Pourbaba, M. and Afkar, A. (2020), "Bond behavior between steel and Glass Fiber Reinforced Polymer (GFRP) bars and ultra high performance concrete reinforced by Multi-Walled Carbon Nanotube (MWCNT)", Steel Compos. Struct., 35(4), 463-474. https://doi.org/10.12989/scs.2020.35.4.463.
  2. Cao, M., Li, L., Zhang, C. and Feng, J. (2018), "Behaviour and damage assessment of a new hybrid-fibre-reinforced mortar under impact load", Mag. Concrete Res., 70(17), 905-918. https://doi.org/10.1680/jmacr.16.00536.
  3. Cao, M., Wei, J. and Wang, L. (2011), "Serviceability and reinforcement of low content whisker in portland cement", J. Wuhan Univ. Technol. Mater. Sci. Edit., 26(4), 749-753. https://doi.org/10.1007/s11595-011-0305-2.
  4. Cao, M., Xu, L. and Zhang, C. (2016), "Rheology, fiber distribution and mechanical properties of calcium carbonate (CaCO3) whisker reinforced cement mortar", Compos. Part A Appl. Sci. Manuf, 90, 662-669. https://doi.org/10.1016/j.compositesa.2016.08.033.
  5. Cao, M., Zhang, C., Li, Y. and Wei, J. (2015), "Using calcium carbonate whisker in hybrid fiber-reinforced cementitious composites", ASCE J. Mater. Civil Eng., 27(4), 04014139. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001041.
  6. Cao, M., Zhang, C., Lv, H. and Xu, L. (2014), "Characterization of mechanical behavior and mechanism of calcium carbonate whisker-reinforced cement mortar", Constr. Build. Mater., 66, 89-97. https://doi.org/10.1016/j.conbuildmat.2014.05.059
  7. Chinthapalli Kumar, H., Chellapandiana, M., Agarwal, A. and Suriya Prakash, S. (2020), "Effectiveness of hybrid fibre-reinforced polymer retrofitting on behaviour of fire damaged RC columns under axial compression", Eng. Struct., 211, 110458. https://doi.org/10.1016/j.engstruct.2020.110458.
  8. Chellapandiana, M., Suriya Prakash, S., Mahadik, V. and Sharma, A. (2019), "Experimental and numerical studies on effectiveness of hybrid FRP strengthening on behavior of RC columns underhigh eccentric compression", J. Bridge Eng., 24(6), 04019048. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001420.
  9. Chellapandiana, M., Mani, A. and Suriya Prakash, S. (2020), "Effect of macro-synthetic structural fibers on the flexural behavior of concrete beams reinforced with different ratios of GFRP bars", Compos. Struct., 254, 112790. https://doi.org/10.1016/j.compstruct.2020.112790.
  10. Chen, J., Liu, X., Liu, H. and Zeng, L. (2018), "Axial compression behavior of circular recycled concrete-filled steel tubular short columns reinforced by silica fume and steel fiber", Steel Compos. Struct., 27(2), 193-200. https://doi.org/10.12989/scs.2018.27.2.193.
  11. Corbi, O., Baratta, A., Corbi, I., Tropeano, F. and Liccardo, E. (2021), "Design issues for smart seismic isolation of structures: Past and recent research", Sustain. Struct., 1(1), 000001. https://doi.org/10.54113/j.sust.2021.000001.
  12. Dev, A., Chellapandiana, M., Suriya Prakash, S. and Kawasaki, Y. (2020), " Failure-mode analysis of macro-synthetic and hybrid fibre-reinforced concrete beams with GFRP bars using acoustic emission technique", Constr. Build. Mater., 249, 118737. https://doi.org/10.1016/j.conbuildmat.2020.118737.
  13. Ding, Y., Yu, K., Yu, J. and Xu, S. (2018), " Structural behaviors of ultra-high performance engineered cementitious composites (UHP-ECC) beams subjected to bending-experimental study", Constr. Build. Mater., 177, 102-115. https://doi.org/10.1016/j.conbuildmat.2018.05.122.
  14. Elshazli, M.T., Saras, N. and Ibrahim, A. (2022), "Structural response of high strength concrete beams using fiber reinforced polymers under reversed cyclic loading", Sustain. Struct., 2(2), 000018. https://doi.org/10.54113/j.sust.2022.000018.
  15. Gao, D., You, P., Zhang, L. and Yan, H. (2018), "Seismic behavior of SFRC shear wall with CFST columns", Steel Compos. Struct., 28(5), 527-539. https://doi.org/10.12989/scs.2018.28.5.527.
  16. Khan, M., Cao, M. and Ali, M. (2018), "Effect of basalt fibers on mechanical properties of calcium carbonate whisker-steel fiber reinforced concrete", Constr. Build. Mater., 192, 742-753. https://doi.org/10.1016/j.conbuildmat.2018.10.159.
  17. Kon, M., Hirakata, L.M., Miyamoto, Y., Kasahara, H. and Asaoka, K. (2005), "Strengthening of calcium phosphate cement by compounding calcium carbonate whiskers", Dent. Mater. J., 24(1), 104-110. https://doi.org/10.4012/dmj.24.104.
  18. Li, L., Zhang, Y., Shi, Y., Xue, Z. and Cao, M. (2022), "Surface cracking and fractal characteristics of cement paste after exposure to high temperatures", Fractal. Fract., 6(9), 465. https://doi.org/10.3390/fractalfract6090465.
  19. Li, Q., Liu, J. and Xu, S. (2015), "Progress in research on carbon nanotubes reinforced cementitious composites", Adv. Mater. Sci. Eng., 2015, 307435. https://doi.org/10.1155/2015/307435.
  20. Li, M., Yang, Y., Liu, M., Guo, X. and Zhou, S. (2015), "Hybrid effect of calcium carbonate whisker and carbon fiber on the mechanical properties and microstructure of oil well cement", Constr. Build. Mater., 93, 995-1002. https://10.1016/j.conbuildmat.2015.05.056.
  21. Metaxa, Z.S., Konsta-Gdoutos, M.S. and Shah, S.P. (2010), "Mechanical properties and nanostructure of cement-based materials reinforced with carbon nanofibers and polyvinyl alcohol (PVA) microfibers", ACI Spec. Publ., 270(10), 115-124. https://doi.org/10.1007/BF02657760.
  22. Pan, J., Cai, J., Ma, H. and Leung, C.K.Y. (2018), "Development of multiscale fiber-reinforced engineered cementitious composites with PVA fiber and CaCO3 whisker", ASCE J. Mater. Civil Eng., 30(6), 040181066. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002305.
  23. Parveen, S., Rana, S. and Fangueiro, R. (2013), "A review on nanomaterial dispersion, microstructure, and mechanical properties of carbon nanotube and nanofiber reinforced cementitious composites", J. Nanomater., 2013, 1-19. https://doi.org/10.1155/2013/710175.
  24. Rossi, P. and Tailhan, J. (2017), "Numerical modeling of the cracking behavior of a steel fiber-reinforced concrete beam on grade", Struct. Concrete, 18(4), 571-576. https://doi.org/10.1002/suco.201600002.
  25. Tang, C. (2017), "Fire resistance of high strength fiber reinforced concrete filled box columns", Steel Compos. Struct., 23(5), 611-621. https://doi.org/10.12989/scs.2017.23.5.611.
  26. Wang, B., Han, Y. and Liu, S. (2013), "Effect of highly dispersed carbon nanotubes on the flexural toughness of cement-based composites", Constr. Build. Mater., 46, 8-12. https://doi.org/10.1016/j.conbuildmat.2013.04.014.
  27. Wang, L., Zhang, H., Zhao, B. and Gao, Y. (2019), "Effect of calcium carbonate whisker and fly ash on mechanical properties of cement mortar under high temperatures", Adv. Mater. Sci. Eng., 2019, 9430804. https://doi.org/10.1155/2019/9430804.
  28. Xiao, J., Liu, H., Ding, T. and Ma, G. (2021), "3D printed concrete components and structures: An overview ", Sustain. Struct., 1(2), 000006. https://doi.org/10.54113/j.sust.2021.000006.
  29. Xu, C., Su, Q. and Masuya, H. (2017), "Static and fatigue performance of stud shear connector in steel fiber reinforced concrete", Steel Compos. Struct., 24(4), 467-479. https://doi.org/10.12989/scs.2017.24.4.467.
  30. Yang, Y., Fu, S. and Li, X. (2017), "Mechanical attributes of uniaxial compression for calcium carbonate whisker reinforced oil well cement pastes", Adv. Mater. Sci. Eng., 2017, 2939057. https://doi.org/10.1155/2017/2939057.
  31. Yang, Y., Zhou, Q., Deng, Y. and Lin, J. (2020), "Reinforcement effects of multi-scale hybrid fiber on flexural and fracture behaviors of ultra-low-weight foamed cement-based composites", Cement Concrete Compos., 108, 103509. https://doi.org/10.1016/j.cemconcomp.2019.103509.
  32. Yazici, S., Inan, G. and Tabak, V. (2007), "Effect of aspect ratio and volume fraction of steel fiber on the mechanical properties of SFRC", Constr. Build. Mater., 21(6), 1250-1253. https://doi.org/10.1016/j.conbuildmat.2006.05.025.
  33. Zhang, C., Han, S. and Hua, Y. (2018), "Flexural performance of reinforced self-consolidating concrete beams containing hybrid fibers", Constr. Build. Mater., 174, 11-23.https://doi.org/10.1016/j.conbuildmat.2018.04.075.