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THE HARDY SPACE OF RAMANUJAN-TYPE ENTIRE
FUNCTIONS

ERHAN DENIZ* AND MURAT CAGLAR

Abstract. In this paper, we deal with some geometric properties in-
cluding starlikeness and convexity of order 8 of Ramanujan-type entire
functions which are natural extensions of classical Ramanujan entire func-
tions. In addition, we determine some conditions on the parameters such
that the Ramanujan-type entire functions belong to the Hardy space and
to the class of bounded analytic functions.

1. Introduction

Ramanujan introduced a function A,(z), which is also called Ramanujan
function or g—Airy function in the literature given by (3) and studied many
of its properties in the lost notebooks (see [5]). Indeed the function Ay(z) is
also a generalization of the many numerous Rogers—Ramanujan-type identities.
Especially A,(1) and A,(¢q) are well known of them. In 2018, Ismail and Zhang

[6] defined and studied the function Aga)(z) (say: Ramanujan-type entire func-
tion), which is a generalization of A,(z) and the Stieltjes—Wigert polynomial.
In the same year, Zhang [16] proved the reality of the zeros of the function

Aga)(z). In 2020, Deniz [2] determined the radii of starlikeness and convexity
of order 8 and also bounds of them.

Denote by D = {z € C: |z| < 1} the open unit disk and let H be the set
of all analytic functions in . Let A be the class of analytic functions f in D
which satisfy the usual normalization conditions f(0) = f/(0) — 1 = 0. Tradi-
tionally, the subclass of A consisting of univalent functions is denoted by S.
The classes of starlike and convex functions in D are two important subclasses
of S. Analytically, for 8 € [0,1) the classes of starlike and convex functions of
order 8 in D are defined by S*(8) := {f: f € S and Re(zf'(2),/f(2)) > B}
andC(B) :={f: feSand 1+ Re(zf"(z),/f'(z)) > B}, respectively. The fa-
miliar classes S* := §*(0) and C := C(0) are known, respectively, as the classes
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of starlike and convex functions in . In [1], for v < 1, the author introduced
the classes

P(v) : ={p € H : In € R such that p(0) = 1, Re [¢"'p(z)] > v, 2 € D}

and R(y):={gecA: ¢ €eP(y)}.

When n = 0, the classes P(v) and R(~) will be denoted by Py(v) and Ro(7),
respectively. Also, for v = 0 we denote Py(y) and Rg(7y) simply by P and R,
respectively.

Recall that the Hadamard product (or convolution) of two power series
f(z)= 3 apz™ and g(2) = > b, 2™ is defined as

n>0 n>0
(f*xg)(z) = Z anbpz™.
n>0

Let H? (0 < p < o0) denote the Hardy space of all analytic functions f(z) in
D and define the integral means M,(r, f) by

(& 27 [7re )" d)” (0 < p < 0)

sup | f(re”)| (p = o0)
0<9<2r

Mp(ra f) =

An analytic function f(z) in D, is said to belong to the Hardy space H? (0 <
p < 00), if the set {M,(r, f) : 7 € [0,1)} is bounded. It is important to remind
here that H? is a Banach space with the norm defined by (see [3, p. 23])

171, = lim M,(r. )

for 1 < p < co. On the other hand, we know that H°° is the class of bounded
analytic functions in D, while H? is the class of power series > a,, 2™ such that
S Jan|? < co. In addition, it is known from [3] that H* is a subset of HP for
0 < p<s<oo. Also, two well-known results about the Hardy space HP are
the following (see [3]):

feHs (s<1)

(1) Ref'(z) > 0= { FE e’ (s e (0,1))

2. Preliminaries

In [6] Ismail and Zhang defined and studied the entire function (say: Ramanujan-
type entire function)

2 Az = Y SO ey,
,g() (¢ @)n
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where a >0, 0<¢g<1,a€Cand

k—1

(@;q@o=1, (a;qk=[[(1—ad) (k=>1).

Jj=0

In the special cases of the parameters a and «, we have the following interesting
functions
(" 0k’
2, - 9 k9 1_
AP (@)=Y 2 = (¢ )nSn(2q2 "5 q)
= @k

and

(3) AM(0; 2)

q(—Z), A(l) Q7 Zq Z

n>0 n>0

where A,(z) and S, (2;q) are the Ramanujan entire function and the Stieltjes—
Wigert polynomial respectively (see [5]). Consequently, Al(f‘)(a;z) generalizes

both A,(z) and S,(z;¢). In [16], Zhang proved that Aga)(—a; z) has infinitely
many negative zeros for a > 0, a > 0 and 0 < ¢ < 1 by using Pédlya fre-
quency sequences. Since the function Aéa)(a; z) does not belong to A, first we
form some natural normalizations. In this paper, we focus on the following

normalized form

a(n—1)
(4) Ra,q(a;z):zAé (a; 2 fz+z quq ) 2" (z€eD)

where a € C, a > 0, 0 < ¢ < 1. Obviously this function belongs to A. We
also say that the function R,(z) = zA4(%) is the normalized Ramanujan entire
function.

In recent years, the authors in [1, 7, 8, 9, 10, 11, 14, 15] studied the Hardy
space of some special functions such as normalized; hypergeometric, Bessel,
Struve, Lommel, Wright and Mittag-Leffler. Motivated by the above studies,
our main aim is to determine some conditions on the parameters such that the
Ramanujan-type entire function Aga)(z) is starlike of order 8 and convex of
order 3, respectively. Also, we find some conditions for the Hadamard products
R, q(a; z) * f(2) to belong to Ro(y). Moreover, we investigate the Hardy space
of the above mentioned normalized Ramanujan-type entire function R, 4(a; 2).

In order to prove the main results we need the following preliminary results.

Lemma 2.1. (Silverman [12]). Let f(z) =z + > anz" € A. If
n>2

Y (n=B)lan <1-5,
n>2

then the function f(z) is in the class S*(3).
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Lemma 2.2. (Silverman [12]). Let f(z) =z + > anz" € A. If
n>2

Y nln—p)la <1 -8,
n>2
then the function f(z) is in the class C(3).

Lemma 2.3. (Eenigenburg and Keogh, [4]). Let 8 € [0,1). If the function
f € C(B) is not of the form

0\ 28—1
(5) {f(z):k—l—lz(l—zee)l B;«é%)
f(2) =k +llog (1 — ze) B=3)
for some k,l € C and 0 € R, then the following statements hold:
a: There exists § = §(f) > 0 such that f' € O
b: If 3 € [0,1), then there exists T = 7(f) > 0 such that f € W
Note that this Hardy space is included in HT 5 by [3].
c: If 6> %, then f € H>.

Lemma 2.4. (Stankiewich and Stankiewich, [13]). Po(X) * Po(p) C Po(7),
where v =1 — 2(1 — A\)(1 — u). The value of v is the best possible.

3. Main Results

In this section, we present our main results related to some geometric prop-
erties and Hardy classes of the normalized Ramanujan-type entire function
Ry q(a; z). We easily see that

(N{eeC:|1-ad*|<|1—a|], g€ (0, 1)} ={acC:1<|a—1[}.
k>1
Therefore, we have |(a;q),| < |1 —a|" fora € C, 1 <|a— 1| and n € N.

Theorem 3.1. Let 8 € [0,1), « > 0, a € C, ¢ € (0,1). The following

assertions are true:
—2a
a: Suppose that above numbers satisfy 1 < |a—1| < U-9d % and the

(I+q™°)
following inequality

1 _(=g=¢*fa—-1)(1—-g=¢*|a—-1{1+¢"")
1-p~ ¢*(1—q)la—1|
Then the normalized Ramanujan-type entire function R, 4(a;z) is star-

like of order B in D.
b: Suppose that above numbers satisfy

a 3
(1-g—¢*]a—1])
—q*la—1](¢** la—1[(¢**|a— 1] = 3(1 —q)) +2(1 — ¢)*) > 0

(6)
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and the following inequality

(7)
1

1-8

3
- (1—g—¢*|a—1])" —¢*|a—1| (¢** |a — 1] (¢** |a — 1| = 3(1 — q)) + 2(1 — q)?)
= 2¢*(1 — )2 |a — 1| '

Then the normalized Ramanujan-type entire function R, 4(a; z) is convex
of order 3 in D.

Proof. a. By virtue of Silverman’s result which is given in Lemma 2.1, in
order to prove the starlikeness of order § of the function R, 4(a; 2), it is enough
to show that the inequality

a(n—1)>2

(a; q)nflq (
(¢ D1

(8) S n-5)

n>2

<1-p

holds true under the hypothesis. According to the hypothesis of the theorem,
by using the inequalities

9) (@ Dn1>(1—0)"" (@ @)na| <la—1"""
and
(10) (n—1)?%>2n—-1)—-1 (n>2)

together with the sums

n—1 __ T n— 7T(2_T)
(11) Zr 171—_7‘ and an l—m

n>2 n>2
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for |r| < 1, we have

LIS T
= zgm—mm—ﬂgingma>
- wxeen ()

1 [(¢*la—1[(2(1 —q) — ¢**[a—1]) 3 ¢** |a —1|

q” (1—q—q>|a—1])° 1—qg—q?>*|a—1]

¢“la—1(1=-8)(1-g—¢*]a—1]) +1-q)
(1—q—¢g]a—1])°

The inequality (6) implies that the last sum is bounded above by 1— /3. There-
fore the inequality (8) is satisfied, that is, R, 4(a; 2) is starlike of order 8 in
D.

b. Similarly, from the Lemma 2.1 that to prove the convexity of order 3 of
the function R, 4(a;z), it is enough to show that the inequality

a(n—1)2

(a; q)nflq
(¢ Q-1

<1-8

is satisfied under our assumptions. Now, if we consider the inequalities (9) and
(10) together with the sums (11) and

Z 2= _ r(r? — 3r +4)
(1=

n>2
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then we can write that

> nln—p)

n>2

(@5 q)n_1g®1°

(@ D1

|1 _ a|n—1 qa(Z(nfl)fl)

_ 1 N
- q“Ejnm B)( 1—q )

_ 1(fam—le“M—l(fam—lﬁ—ﬂl—®)+41—®3>
(1—g¢—g*a—1])°

B <q2a|a—1|(2(1—q>—q2a|a—1|)>

° (1—g¢—¢*a—1])° '

The inequality (7) implies that the last sum is bounded above by 1— /3. There-
fore the inequality (12) is satisfied, that is, R4 q(a;z) is convex of order f in
D. O

Theorem 3.2. Let 3 €[0,1),a >0, a€C,qe (0,1) and 1 < |a—1| <

q“la—1]

1—q—q¢**[a—1]

(13) B<1—

holds, then feal%2) ¢ py(p).

Proof. In order to prove R““f(“) € Po(B), it is enough to show that

Re(M) > B. For this purpose, consider the function p(z) = —1= (M

1-8
It can be easily seen that |p(z) — 1| < 1 implies Re(m%(a;z)) > 3. Now, using

z

the inequalities (9), (10) and the well known geometric series sum (11), we have

2
p(z)—1 = |[—— 1+§: ;;ff”znlﬂ 1
n>2
|7Qn1ma *
= 1—6;; (¢ Dn—1
1 1 —al g nt
u—ﬁng;( 1-q )
q*Ja— 1|

1-B1-qg=¢*|a—1])

_5)
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Ra.q(a;2)

Consequently, from (13), is in the class Py(8), and the proof is com-
pleted. O

Setting @« — 1 = a = 0 in Theorem 3.1 and Theorem 3.2, we have the
following results.

Corollary 3.3. The following assertions are true:

a: If the inequality

q(1—q)
(1-q—¢*)(1-2¢—¢?)
holds for ¢ € (0,qp =~ 0.292) U (¢1 = 0.712,1), where qo, ¢1 are real roots
of the equation 1 —4q+¢?+3¢>+¢* = 0, then the normalized Ramanujan
entire function R,(z) is starlike of order 8 in D.
b: If the inequality

0<B<1-— <1

2q(1 —q)*

- <1
1 —5q +4q¢% + 6¢3 — 3¢* — 4¢° — ¢F

0<p<1

holds for ¢ € (0,g2 ~ 0.185), where go are real root of the equation
—14+7q—8¢® —4¢> +3¢* +4¢° +¢® = 0, then the normalized Ramanujan
entire function Ry(z) is convex of order § in D.
c: If the inequality
.
l—q—g?
holds for ¢ € (0,2 — 1), then the function 72} is in the class Py ().

Setting 8 = 0 and 8 = 1/2 in Corollary 3.3, we have the following interesting
results:

0<p<l-— <1

g € q€(0,g0~0.292)U(q1 =0.712,1) = Ry(z) € S*

1
g € (0,0.22862] U (0.758845,1) = R,(z) € S* (2)
g € (0,0.18492] = Ry(z) € C

¢ € (0,013631] = Ry(z) €C (;)

R
g € (0,0.41421) = # € Po
R 1
g € (0,0.302776) = # € Po <2) .
Theorem 3.4. Suppose that the assertions of the Theorem 3.1-b are sat-

isfied. Then R, 4(a;z2) € HT7 for B € [0,3) and Rgq(a;2) € H™® for
Bes1).
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Proof. By the definitions of the standard binomial expansion and the stan-
dard Maclaurin series for the logarithmic function, we have

op_ 1-28), .
(14) k+1z(1- 2629)25 Lokl ;) %emez”+1

for k,l € C and # € R. On the other hand

(15) k+llog (1—ze") =k —1 Z ?e’"‘gz”'“.
n

n>0

If we consider the series representation of the function R (a; 2) which is given
by (4), then we see that the function Ry 4(a; 2) is not of the forms (14) for 3 # 1
and (15) for 3 = 3, respectively. On the other hand, part b. of Theorem 3.1
states that the function R, 4(a;2) is convex of order S under our hypothesis.
Therefore, the proof is completed by applying Lemma 2.3. O

If we take « —1 = a = 0 in Theorem 3.4, we obtain the following result.

Corollary 3.5. Let 8 € [0,1) and ¢ € (0, g2 = 0.185). If the inequality

_ 2
0<pB<1 29(1 —q)

- <1
- 1 —5q+4q% +6¢> — 3¢* — 4¢5 — ¢°

is satisfied, then R,(z) € W for B € [0,%) and Ry(z) € H™® for B € [3,1).

For 8 =0 and 8 = 1/2 in Corollary 3.5, we have the following interesting
results:

g € (0,0.18492] = R,(z) € H
q € (0,0.13631] = R,(z) € H™.

Theorem 3.6. Leta >0, a € C, A€ [0,1), p<1,y=1-2(1-X)(1—p)
and g € (0,1). Suppose that the function f(z) € Ro(p). If the inequalities
1<|a—1| < 134 and

q20¢

q*la—1]

A<1—
1—q—q¢**[a—1]

hold, then u(z) = Ry 4(a; 2) * f(2) € Ro(%).

Proof. If f(z) € Ro(u), then this implies that f'(z) € Po(u). We know from
Theorem 3.2 that the function R‘“‘f(‘”) € Po(A). Since u'(z) = R‘“%(az) * f'(2),
taking into account Lemma 2.4 we may write that u'(z) € Py(y). This implies
that u(z) € Ro(y). O
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