THE HARDY SPACE OF RAMANUJAN-TYPE ENTIRE FUNCTIONS

Erhan Deniz* and Murat Çağlar

Abstract

In this paper, we deal with some geometric properties including starlikeness and convexity of order β of Ramanujan-type entire functions which are natural extensions of classical Ramanujan entire functions. In addition, we determine some conditions on the parameters such that the Ramanujan-type entire functions belong to the Hardy space and to the class of bounded analytic functions.

1. Introduction

Ramanujan introduced a function $A_{q}(z)$, which is also called Ramanujan function or q-Airy function in the literature given by (3) and studied many of its properties in the lost notebooks (see [5]). Indeed the function $A_{q}(z)$ is also a generalization of the many numerous Rogers-Ramanujan-type identities. Especially $A_{q}(1)$ and $A_{q}(q)$ are well known of them. In 2018, Ismail and Zhang [6] defined and studied the function $A_{q}^{(\alpha)}(z)$ (say: Ramanujan-type entire function), which is a generalization of $A_{q}(z)$ and the Stieltjes-Wigert polynomial. In the same year, Zhang [16] proved the reality of the zeros of the function $A_{q}^{(\alpha)}(z)$. In 2020, Deniz [2] determined the radii of starlikeness and convexity of order β and also bounds of them.

Denote by $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ the open unit disk and let \mathcal{H} be the set of all analytic functions in \mathbb{D}. Let \mathcal{A} be the class of analytic functions f in \mathbb{D} which satisfy the usual normalization conditions $f(0)=f^{\prime}(0)-1=0$. Traditionally, the subclass of \mathcal{A} consisting of univalent functions is denoted by \mathcal{S}. The classes of starlike and convex functions in \mathbb{D} are two important subclasses of \mathcal{S}. Analytically, for $\beta \in[0,1)$ the classes of starlike and convex functions of order β in \mathbb{D} are defined by $\mathcal{S}^{*}(\beta):=\left\{f: f \in \mathcal{S}\right.$ and $\left.\operatorname{Re}\left(z f^{\prime}(z) / f(z)\right)>\beta\right\}$ and $\mathcal{C}(\beta):=\left\{f: f \in \mathcal{S}\right.$ and $\left.1+\operatorname{Re}\left(z f^{\prime \prime}(z) / f^{\prime}(z)\right)>\beta\right\}$, respectively. The familiar classes $\mathcal{S}^{*}:=\mathcal{S}^{*}(0)$ and $\mathcal{C}:=\mathcal{C}(0)$ are known, respectively, as the classes

[^0]of starlike and convex functions in \mathbb{D}. In [1], for $\gamma<1$, the author introduced the classes
$$
\mathcal{P}(\gamma):=\left\{p \in \mathcal{H}: \exists \eta \in \mathbb{R} \text { such that } p(0)=1, \operatorname{Re}\left[e^{i \eta} p(z)\right]>\gamma, z \in \mathbb{D}\right\}
$$
and $\mathcal{R}(\gamma):=\left\{g \in \mathcal{A}: g^{\prime} \in \mathcal{P}(\gamma)\right\}$.
When $\eta=0$, the classes $\mathcal{P}(\gamma)$ and $\mathcal{R}(\gamma)$ will be denoted by $\mathcal{P}_{0}(\gamma)$ and $\mathcal{R}_{0}(\gamma)$, respectively. Also, for $\gamma=0$ we denote $\mathcal{P}_{0}(\gamma)$ and $\mathcal{R}_{0}(\gamma)$ simply by \mathcal{P} and \mathcal{R}, respectively.

Recall that the Hadamard product (or convolution) of two power series $f(z)=\sum_{n \geq 0} a_{n} z^{n}$ and $g(z)=\sum_{n \geq 0} b_{n} z^{n}$ is defined as

$$
(f * g)(z)=\sum_{n \geq 0} a_{n} b_{n} z^{n}
$$

Let $\mathcal{H}^{p}(0<p \leq \infty)$ denote the Hardy space of all analytic functions $f(z)$ in \mathbb{D} and define the integral means $M_{p}(r, f)$ by

$$
M_{p}(r, f)=\left\{\begin{array}{cc}
\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{p} d \theta\right)^{\frac{1}{p}} & (0<p<\infty) \\
\sup _{0 \leq \theta \leq 2 \pi}\left|f\left(r e^{i \theta}\right)\right| & (p=\infty)
\end{array} .\right.
$$

An analytic function $f(z)$ in \mathbb{D}, is said to belong to the Hardy space $\mathcal{H}^{p}(0<$ $p \leq \infty)$, if the set $\left\{M_{p}(r, f): r \in[0,1)\right\}$ is bounded. It is important to remind here that \mathcal{H}^{p} is a Banach space with the norm defined by (see [3, p. 23])

$$
\|f\|_{p}=\lim _{r \rightarrow 1^{-}} M_{p}(r, f)
$$

for $1 \leq p \leq \infty$. On the other hand, we know that \mathcal{H}^{∞} is the class of bounded analytic functions in \mathbb{D}, while \mathcal{H}^{2} is the class of power series $\sum a_{n} z^{n}$ such that $\sum\left|a_{n}\right|^{2}<\infty$. In addition, it is known from [3] that \mathcal{H}^{s} is a subset of \mathcal{H}^{p} for $0<p \leq s \leq \infty$. Also, two well-known results about the Hardy space \mathcal{H}^{p} are the following (see [3]):

$$
\operatorname{Re} f^{\prime}(z)>0 \Rightarrow\left\{\begin{array}{cc}
f^{\prime} \in \mathcal{H}^{s} & (s<1) \tag{1}\\
f^{\frac{s}{1-s}} \in \mathcal{H}^{s} & (s \in(0,1))
\end{array}\right.
$$

2. Preliminaries

In [6] Ismail and Zhang defined and studied the entire function (say: Ramanujantype entire function)

$$
\begin{equation*}
A_{q}^{(\alpha)}(a ; z)=\sum_{n \geq 0} \frac{(a ; q)_{n} q^{\alpha n^{2}}}{(q ; q)_{n}} z^{n} \quad(z \in \mathbb{C}) \tag{2}
\end{equation*}
$$

where $\alpha>0,0<q<1, a \in \mathbb{C}$ and

$$
(a ; q)_{0}=1, \quad(a ; q)_{k}=\prod_{j=0}^{k-1}\left(1-a q^{j}\right) \quad(k \geq 1)
$$

In the special cases of the parameters a and α, we have the following interesting functions

$$
A_{q}^{\left(\frac{1}{2}\right)}\left(q^{-n} ; z\right)=\sum_{k \geq 0} \frac{\left(q^{-n} ; q\right)_{k} q^{\frac{k^{2}}{2}}}{(q ; q)_{k}} z^{k}=(q ; q)_{n} S_{n}\left(z q^{\frac{1}{2}-n} ; q\right)
$$

and

$$
\begin{equation*}
A_{q}^{(1)}(0 ; z)=\sum_{n \geq 0} \frac{q^{n^{2}}}{(q ; q)_{n}} z^{n}=A_{q}(-z), \quad A_{q}^{(1)}(q ; z)=\sum_{n \geq 0} q^{n^{2}} z^{n} \tag{3}
\end{equation*}
$$

where $A_{q}(z)$ and $S_{n}(z ; q)$ are the Ramanujan entire function and the StieltjesWigert polynomial respectively (see [5]). Consequently, $A_{q}^{(\alpha)}(a ; z)$ generalizes both $A_{q}(z)$ and $S_{n}(z ; q)$. In [16], Zhang proved that $A_{q}^{(\alpha)}(-a ; z)$ has infinitely many negative zeros for $a \geq 0, \alpha>0$ and $0<q<1$ by using Pólya frequency sequences. Since the function $A_{q}^{(\alpha)}(a ; z)$ does not belong to \mathcal{A}, first we form some natural normalizations. In this paper, we focus on the following normalized form

$$
\begin{equation*}
R_{\alpha, q}(a ; z)=z A_{q}^{(\alpha)}(a ; z)=z+\sum_{n \geq 2} \frac{(a ; q)_{n-1} q^{\alpha(n-1)^{2}}}{(q ; q)_{n-1}} z^{n} \quad(z \in \mathbb{D}) \tag{4}
\end{equation*}
$$

where $a \in \mathbb{C}, \alpha>0,0<q<1$. Obviously this function belongs to \mathcal{A}. We also say that the function $R_{q}(z)=z A_{q}(z)$ is the normalized Ramanujan entire function.

In recent years, the authors in $[1,7,8,9,10,11,14,15]$ studied the Hardy space of some special functions such as normalized; hypergeometric, Bessel, Struve, Lommel, Wright and Mittag-Leffler. Motivated by the above studies, our main aim is to determine some conditions on the parameters such that the Ramanujan-type entire function $A_{q}^{(\alpha)}(z)$ is starlike of order β and convex of order β, respectively. Also, we find some conditions for the Hadamard products $R_{\alpha, q}(a ; z) * f(z)$ to belong to $\mathcal{R}_{0}(\gamma)$. Moreover, we investigate the Hardy space of the above mentioned normalized Ramanujan-type entire function $R_{\alpha, q}(a ; z)$.

In order to prove the main results we need the following preliminary results.
Lemma 2.1. (Silverman [12]). Let $f(z)=z+\sum_{n \geq 2} a_{n} z^{n} \in \mathcal{A}$. If

$$
\sum_{n \geq 2}(n-\beta)\left|a_{n}\right| \leq 1-\beta,
$$

then the function $f(z)$ is in the class $\mathcal{S}^{*}(\beta)$.

Lemma 2.2. (Silverman [12]). Let $f(z)=z+\sum_{n \geq 2} a_{n} z^{n} \in \mathcal{A}$. If

$$
\sum_{n \geq 2} n(n-\beta)\left|a_{n}\right| \leq 1-\beta
$$

then the function $f(z)$ is in the class $\mathcal{C}(\beta)$.
Lemma 2.3. (Eenigenburg and Keogh, [4]). Let $\beta \in[0,1)$. If the function $f \in \mathcal{C}(\beta)$ is not of the form

$$
\left\{\begin{array}{cc}
f(z)=k+l z\left(1-z e^{i \theta}\right)^{2 \beta-1} & \left(\beta \neq \frac{1}{2}\right) \tag{5}\\
f(z)=k+l \log \left(1-z e^{i \theta}\right) & \left(\beta=\frac{1}{2}\right)
\end{array}\right.
$$

for some $k, l \in \mathbb{C}$ and $\theta \in \mathbb{R}$, then the following statements hold:
a: There exists $\delta=\delta(f)>0$ such that $f^{\prime} \in \mathcal{H}^{\delta+\frac{1}{2(1-\beta)}}$.
b: If $\beta \in\left[0, \frac{1}{2}\right)$, then there exists $\tau=\tau(f)>0$ such that $f \in \mathcal{H}^{\tau+\frac{1}{1-2 \beta}}$.
Note that this Hardy space is included in $\mathcal{H}^{\frac{1}{1-2 \beta}}$ by [3].
c: If $\beta \geq \frac{1}{2}$, then $f \in \mathcal{H}^{\infty}$.
Lemma 2.4. (Stankiewich and Stankiewich, [13]). $\mathcal{P}_{0}(\lambda) * \mathcal{P}_{0}(\mu) \subset \mathcal{P}_{0}(\gamma)$, where $\gamma=1-2(1-\lambda)(1-\mu)$. The value of γ is the best possible.

3. Main Results

In this section, we present our main results related to some geometric properties and Hardy classes of the normalized Ramanujan-type entire function $R_{\alpha, q}(a ; z)$. We easily see that

$$
\bigcap_{k \geq 1}\left\{a \in \mathbb{C}:\left|1-a q^{k}\right| \leq|1-a|, q \in(0,1)\right\}=\{a \in \mathbb{C}: 1 \leq|a-1|\}
$$

Therefore, we have $\left|(a ; q)_{n}\right| \leq|1-a|^{n}$ for $a \in \mathbb{C}, 1 \leq|a-1|$ and $n \in \mathbb{N}$.
Theorem 3.1. Let $\beta \in[0,1), \alpha>0, a \in \mathbb{C}, q \in(0,1)$. The following assertions are true:
a: Suppose that above numbers satisfy $1 \leq|a-1|<\frac{(1-q) q^{-2 \alpha}}{\left(1+q^{-\alpha}\right)}$ and the following inequality

$$
\begin{equation*}
\frac{1}{1-\beta} \leq \frac{\left(1-q-q^{2 \alpha}|a-1|\right)\left(1-q-q^{2 \alpha}|a-1|\left(1+q^{-\alpha}\right)\right)}{q^{\alpha}(1-q)|a-1|} . \tag{6}
\end{equation*}
$$

Then the normalized Ramanujan-type entire function $R_{\alpha, q}(a ; z)$ is starlike of order β in \mathbb{D}.
b: Suppose that above numbers satisfy

$$
\begin{aligned}
& \left(1-q-q^{2 \alpha}|a-1|\right)^{3} \\
& \quad-q^{\alpha}|a-1|\left(q^{2 \alpha}|a-1|\left(q^{2 \alpha}|a-1|-3(1-q)\right)+2(1-q)^{2}\right)>0
\end{aligned}
$$

and the following inequality

$$
\begin{align*}
& \frac{1}{1-\beta} \tag{7}\\
& \leq \frac{\left(1-q-q^{2 \alpha}|a-1|\right)^{3}-q^{\alpha}|a-1|\left(q^{2 \alpha}|a-1|\left(q^{2 \alpha}|a-1|-3(1-q)\right)+2(1-q)^{2}\right)}{2 q^{\alpha}(1-q)^{2}|a-1|}
\end{align*}
$$

Then the normalized Ramanujan-type entire function $R_{\alpha, q}(a ; z)$ is convex of order β in \mathbb{D}.

Proof. a. By virtue of Silverman's result which is given in Lemma 2.1, in order to prove the starlikeness of order β of the function $R_{\alpha, q}(a ; z)$, it is enough to show that the inequality

$$
\begin{equation*}
\sum_{n \geq 2}(n-\beta)\left|\frac{(a ; q)_{n-1} q^{\alpha(n-1)^{2}}}{(q ; q)_{n-1}}\right| \leq 1-\beta \tag{8}
\end{equation*}
$$

holds true under the hypothesis. According to the hypothesis of the theorem, by using the inequalities

$$
\begin{equation*}
(q ; q)_{n-1} \geq(1-q)^{n-1},\left|(a ; q)_{n-1}\right| \leq|a-1|^{n-1} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
(n-1)^{2} \geq 2(n-1)-1 \quad(n \geq 2) \tag{10}
\end{equation*}
$$

together with the sums

$$
\begin{equation*}
\sum_{n \geq 2} r^{n-1}=\frac{r}{1-r} \quad \text { and } \quad \sum_{n \geq 2} n r^{n-1}=\frac{r(2-r)}{(1-r)^{2}} \tag{11}
\end{equation*}
$$

for $|r|<1$, we have

$$
\begin{aligned}
& \sum_{n \geq 2}(n-\beta)\left|\frac{(a ; q)_{n-1} q^{\alpha(n-1)^{2}}}{(q ; q)_{n-1}}\right| \\
\leq & \sum_{n \geq 2}(n-\beta) \frac{\left|(a ; q)_{n-1}\right| q^{\alpha(n-1)^{2}}}{(q ; q)_{n-1}} \\
\leq & \sum_{n \geq 2}(n-\beta) \frac{|a-1|^{n-1} q^{\alpha(2(n-1)-1)}}{(1-q)^{n-1}} \\
= & \frac{1}{q^{\alpha}} \sum_{n \geq 2}(n-\beta)\left(\frac{|a-1| q^{2 \alpha}}{1-q}\right)^{n-1} \\
= & \frac{1}{q^{\alpha}}\left(\frac{q^{2 \alpha}|a-1|\left(2(1-q)-q^{2 \alpha}|a-1|\right)}{\left(1-q-q^{2 \alpha}|a-1|\right)^{2}}-\beta \frac{q^{2 \alpha}|a-1|}{1-q-q^{2 \alpha}|a-1|}\right) \\
= & \frac{q^{\alpha}|a-1|\left((1-\beta)\left(1-q-q^{2 \alpha}|a-1|\right)+1-q\right)}{\left(1-q-q^{2 \alpha}|a-1|\right)^{2}} .
\end{aligned}
$$

The inequality (6) implies that the last sum is bounded above by $1-\beta$. Therefore the inequality (8) is satisfied, that is, $R_{\alpha, q}(a ; z)$ is starlike of order β in \mathbb{D}.
b. Similarly, from the Lemma 2.1 that to prove the convexity of order β of the function $R_{\alpha, q}(a ; z)$, it is enough to show that the inequality

$$
\begin{equation*}
\sum_{n \geq 2} n(n-\beta)\left|\frac{(a ; q)_{n-1} q^{\alpha(n-1)^{2}}}{(q ; q)_{n-1}}\right| \leq 1-\beta \tag{12}
\end{equation*}
$$

is satisfied under our assumptions. Now, if we consider the inequalities (9) and (10) together with the sums (11) and

$$
\sum_{n \geq 2} n^{2} r^{n-1}=\frac{r\left(r^{2}-3 r+4\right)}{(1-r)^{3}}
$$

then we can write that

$$
\begin{aligned}
& \sum_{n \geq 2} n(n-\beta)\left|\frac{(a ; q)_{n-1} q^{\alpha(n-1)^{2}}}{(q ; q)_{n-1}}\right| \\
\leq & \sum_{n \geq 2} n(n-\beta) \frac{|1-a|^{n-1} q^{\alpha(2(n-1)-1)}}{(1-q)^{n-1}} \\
= & \frac{1}{q^{\alpha}} \sum_{n \geq 2} n(n-\beta)\left(\frac{|1-a| q^{2 \alpha}}{1-q}\right)^{n-1} \\
= & \frac{1}{q^{\alpha}}\left(\frac{q^{2 \alpha}|a-1|\left(q^{2 \alpha}|a-1|\left(q^{2 \alpha}|a-1|-3(1-q)\right)+4(1-q)^{2}\right)}{\left(1-q-q^{2 \alpha}|a-1|\right)^{3}}\right) \\
& -\frac{\beta}{q^{\alpha}}\left(\frac{q^{2 \alpha}|a-1|\left(2(1-q)-q^{2 \alpha}|a-1|\right)}{\left(1-q-q^{2 \alpha}|a-1|\right)^{2}}\right) .
\end{aligned}
$$

The inequality (7) implies that the last sum is bounded above by $1-\beta$. Therefore the inequality (12) is satisfied, that is, $R_{\alpha, q}(a ; z)$ is convex of order β in \mathbb{D}.

Theorem 3.2. Let $\beta \in[0,1), \alpha>0, a \in \mathbb{C}, q \in(0,1)$ and $1 \leq|a-1|<$ $\frac{1-q}{q^{2 \alpha}}$. If the inequality

$$
\begin{equation*}
\beta<1-\frac{q^{\alpha}|a-1|}{1-q-q^{2 \alpha}|a-1|} \tag{13}
\end{equation*}
$$

holds, then $\frac{R_{\alpha, q}(a ; z)}{z} \in \mathcal{P}_{0}(\beta)$.
Proof. In order to prove $\frac{R_{\alpha, q}(a ; z)}{z} \in \mathcal{P}_{0}(\beta)$, it is enough to show that $\operatorname{Re}\left(\frac{R_{\alpha, q}(a ; z)}{z}\right)>\beta$. For this purpose, consider the function $p(z)=\frac{1}{1-\beta}\left(\frac{R_{\alpha, q}(a ; z)}{z}-\beta\right)$. It can be easily seen that $|p(z)-1|<1$ implies $\operatorname{Re}\left(\frac{R_{\alpha, q}(a ; z)}{z}\right)>\beta$. Now, using the inequalities (9), (10) and the well known geometric series sum (11), we have

$$
\begin{aligned}
|p(z)-1| & =\left|\frac{1}{1-\beta}\left(1+\sum_{n \geq 2} \frac{(a ; q)_{n-1} q^{\alpha(n-1)^{2}}}{(q ; q)_{n-1}} z^{n-1}-\beta\right)-1\right| \\
& \leq \frac{1}{1-\beta} \sum_{n \geq 2} \frac{\left|(a ; q)_{n-1}\right| q^{\alpha(n-1)^{2}}}{(q ; q)_{n-1}} \\
& \leq \frac{1}{(1-\beta) q^{\alpha}} \sum_{n \geq 2}\left(\frac{|1-a| q^{2 \alpha}}{1-q}\right)^{n-1} \\
& =\frac{q^{\alpha}|a-1|}{(1-\beta)\left(1-q-q^{2 \alpha}|a-1|\right)}
\end{aligned}
$$

Consequently, from (13), $\frac{R_{\alpha, q}(a ; z)}{z}$ is in the class $\mathcal{P}_{0}(\beta)$, and the proof is completed.

Setting $\alpha-1=a=0$ in Theorem 3.1 and Theorem 3.2, we have the following results.

Corollary 3.3. The following assertions are true:
a: If the inequality

$$
0 \leq \beta \leq 1-\frac{q(1-q)}{\left(1-q-q^{2}\right)\left(1-2 q-q^{2}\right)}<1
$$

holds for $q \in\left(0, q_{0} \approx 0.292\right) \cup\left(q_{1} \approx 0.712,1\right)$, where q_{0}, q_{1} are real roots of the equation $1-4 q+q^{2}+3 q^{3}+q^{4}=0$, then the normalized Ramanujan entire function $R_{q}(z)$ is starlike of order β in \mathbb{D}.
b: If the inequality

$$
0 \leq \beta \leq 1-\frac{2 q(1-q)^{2}}{1-5 q+4 q^{2}+6 q^{3}-3 q^{4}-4 q^{5}-q^{6}}<1
$$

holds for $q \in\left(0, q_{2} \approx 0.185\right)$, where q_{2} are real root of the equation $-1+7 q-8 q^{2}-4 q^{3}+3 q^{4}+4 q^{5}+q^{6}=0$, then the normalized Ramanujan entire function $R_{q}(z)$ is convex of order β in \mathbb{D}.
c: If the inequality

$$
0 \leq \beta<1-\frac{q}{1-q-q^{2}}<1
$$

holds for $q \in(0, \sqrt{2}-1)$, then the function $\frac{R_{q}(z)}{z}$ is in the class $\mathcal{P}_{0}(\beta)$.
Setting $\beta=0$ and $\beta=1 / 2$ in Corollary 3.3, we have the following interesting results:

$$
\begin{aligned}
& q \in q \in\left(0, q_{0} \approx 0.292\right) \cup\left(q_{1} \approx 0.712,1\right) \Rightarrow R_{q}(z) \in \mathcal{S}^{*} \\
& q \in(0,0.22862] \cup(0.758845,1) \Rightarrow R_{q}(z) \in \mathcal{S}^{*}\left(\frac{1}{2}\right) \\
& q \in(0,0.18492] \Rightarrow R_{q}(z) \in \mathcal{C} \\
& q \in(0,0.13631] \Rightarrow R_{q}(z) \in \mathcal{C}\left(\frac{1}{2}\right) \\
& q \in(0,0.41421) \Rightarrow \frac{R_{q}(z)}{z} \in \mathcal{P}_{0} \\
& q \in(0,0.302776) \Rightarrow \frac{R_{q}(z)}{z} \in \mathcal{P}_{0}\left(\frac{1}{2}\right) .
\end{aligned}
$$

Theorem 3.4. Suppose that the assertions of the Theorem 3.1-b are satisfied. Then $R_{\alpha, q}(a ; z) \in \mathcal{H}^{\frac{1}{1-2 \beta}}$ for $\beta \in\left[0, \frac{1}{2}\right)$ and $R_{\alpha, q}(a ; z) \in \mathcal{H}^{\infty}$ for $\beta \in\left[\frac{1}{2}, 1\right)$.

Proof. By the definitions of the standard binomial expansion and the standard Maclaurin series for the logarithmic function, we have

$$
\begin{equation*}
k+l z\left(1-z e^{i \theta}\right)^{2 \beta-1}=k+l \sum_{n \geq 0} \frac{(1-2 \beta)_{n}}{n!} e^{i n \theta} z^{n+1} \tag{14}
\end{equation*}
$$

for $k, l \in \mathbb{C}$ and $\theta \in \mathbb{R}$. On the other hand

$$
\begin{equation*}
k+l \log \left(1-z e^{i \theta}\right)=k-l \sum_{n \geq 0} \frac{1}{n+1} e^{i n \theta} z^{n+1} \tag{15}
\end{equation*}
$$

If we consider the series representation of the function $R_{\alpha, q}(a ; z)$ which is given by (4), then we see that the function $R_{\alpha, q}(a ; z)$ is not of the forms (14) for $\beta \neq \frac{1}{2}$ and (15) for $\beta=\frac{1}{2}$, respectively. On the other hand, part \mathbf{b}. of Theorem 3.1 states that the function $R_{\alpha, q}(a ; z)$ is convex of order β under our hypothesis. Therefore, the proof is completed by applying Lemma 2.3.

If we take $\alpha-1=a=0$ in Theorem 3.4, we obtain the following result.
Corollary 3.5. Let $\beta \in[0,1)$ and $q \in\left(0, q_{2} \approx 0.185\right)$. If the inequality

$$
0 \leq \beta \leq 1-\frac{2 q(1-q)^{2}}{1-5 q+4 q^{2}+6 q^{3}-3 q^{4}-4 q^{5}-q^{6}}<1
$$

is satisfied, then $R_{q}(z) \in \mathcal{H}^{\frac{1}{1-2 \beta}}$ for $\beta \in\left[0, \frac{1}{2}\right)$ and $R_{q}(z) \in \mathcal{H}^{\infty}$ for $\beta \in\left[\frac{1}{2}, 1\right)$.
For $\beta=0$ and $\beta=1 / 2$ in Corollary 3.5 , we have the following interesting results:

$$
\begin{aligned}
q \in(0,0.18492] & \Rightarrow R_{q}(z) \in \mathcal{H} \\
q \in(0,0.13631] & \Rightarrow R_{q}(z) \in \mathcal{H}^{\infty}
\end{aligned}
$$

Theorem 3.6. Let $\alpha>0, a \in \mathbb{C}, \lambda \in[0,1), \mu<1, \gamma=1-2(1-\lambda)(1-\mu)$ and $q \in(0,1)$. Suppose that the function $f(z) \in \mathcal{R}_{0}(\mu)$. If the inequalities $1 \leq|a-1|<\frac{1-q}{q^{2 \alpha}}$ and

$$
\lambda<1-\frac{q^{\alpha}|a-1|}{1-q-q^{2 \alpha}|a-1|}
$$

hold, then $u(z)=R_{\alpha, q}(a ; z) * f(z) \in \mathcal{R}_{0}(\gamma)$.
Proof. If $f(z) \in \mathcal{R}_{0}(\mu)$, then this implies that $f^{\prime}(z) \in \mathcal{P}_{0}(\mu)$. We know from Theorem 3.2 that the function $\frac{R_{\alpha, q}(a ; z)}{z} \in \mathcal{P}_{0}(\lambda)$. Since $u^{\prime}(z)=\frac{R_{\alpha, q}(a ; z)}{z} * f^{\prime}(z)$,
 that $u(z) \in \mathcal{R}_{0}(\gamma)$.

References

[1] Á. Baricz, Bessel transforms and Hardy space of generalized Bessel functions, Mathematica, 48 (2006), 127-136.
[2] E. Deniz, Geometric and monotonic properties of Ramanujan type entire functions, Ramanujan J. 55 (2021), 103-130
[3] P. L. Duren, Theory of H_{p} Spaces. A series of Monographs and Textbooks in Pure and Applied Mathematics, vol. 38, Academic Press, New York and London, 1970.
[4] P. J. Eenigenburg, and F. R. Keogh, The Hardy class of some univalent functions and their derivatives, Michigan Math. J. 17 (1970), 335-346.
[5] M. E. H. Ismail, Classical and Quantum Orthogonal Polynomials in One Variable, Cambridge University Press, Cambridge, 2005.
[6] M. E. H. Ismail, and R. Zhang, q-Bessel functions and Rogers-Ramanujan type identities, Proc. Am. Math. Soc. 146 (2018) 3633-3646.
[7] I. B. Jung, Y. C. Kim, and H. M. Srivastava, The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal. Appl. 176 (1993), 138-147.
[8] Y. C. Kim, and H. M. Srivastava, Some families of generalized hypergeometric functions associated with the Hardy space of analytic functions, Proc. Japan Acad., Seri A, 70 (1994), no. 2, 41-46.
[9] S. Ponnusamy, The Hardy space of hypergeometric functions, Complex Var. Elliptic Equ. 29 (1996), 83-96.
[10] J. K. Prajapat, S. Maharana, and D. Bansal, Radius of starlikeness and Hardy space of Mittag-Leffer functions, Filomat, 32 (2018), no. 18, 6475-6486.
[11] M. Raza, M. U Din, and S. N. Malik, Certain geometric properties of normalized Wright functions, J. Func. Spaces, 2016 Article ID 1896154 (2016), 1-8.
[12] H. Silverman, Univalent functions with negative coefficients, Proc. Am. Math. Soc. 51 (1975), no. 1, 109-116.
[13] J. Stankiewich, and Z. Stankiewich, Some applications of Hadamard convolutions in the theory of functions, Ann. Univ. Mariae Curie-Sklodowska, 40 (1986), 251-265.
[14] N. Yağmur, Hardy space of Lommel functions, Bull. Korean Math. Soc. 52 (2015), no. 3, 1035-1046.
[15] N. Yağmur, and H. Orhan, Hardy space of generalized Struve functions, Complex Var. Elliptic Equ. 59 (2014), no. 7, 929-936.
[16] R. Zhang, Zeros of Ramanujan type entire functions, Proc. Am. Math. Soc. 145 (2017), 241-250.

Erhan Deniz
Department of Mathematics, Faculty of Science and Letters, Kafkas University, Kars 36100, Türkiye. E-mail: edeniz36@gmail.com

Murat Çağlar
Department of Mathematics, Faculty of Science,
Erzurum Technical University,

Erzurum 25100, Türkiye.
E-mail: mcaglar25@gmail.com, murat.caglar@erzurum.edu.tr

[^0]: Received April 18, 2022. Accepted September 30, 2022.
 2020 Mathematics Subject Classification. 33C45, 33E99, 30C45.
 Key words and phrases. analytic function, Ramanujan-type entire functions, starlike and convex functions, Hardy space.
 *Corresponding author

