DOI QR코드

DOI QR Code

An equivalent linear SDOF system for prediction of nonlinear displacement demands of non-ductile reinforced concrete buildings with shear walls

  • Saman Yaghmaei-Sabegh (Department of Civil Engineering, University of Tabriz) ;
  • Shabnam Neekmanesh (Department of Civil Engineering, University of Tabriz) ;
  • Nelson Lam (Department of Infrastructure Engineering, The University of Melbourne) ;
  • Anita Amirsardari (Centre for Smart Infrastructure and Digital Construction, Swinburne University of Technology) ;
  • Nasser Taghizadieh (Department of Civil Engineering, University of Tabriz)
  • 투고 : 2022.02.09
  • 심사 : 2023.02.24
  • 발행 : 2023.03.10

초록

Reinforced concrete (RC) shear wall structures are one of the most widely used structural systems to resist seismic loading all around the world. Although there have been several efforts to provide conceptually simple procedures to reasonably assess the seismic demands of structures over recent decades, it seems that lesser effort has been put on a number of structural forms such as RC shear wall structures. Therefore, this study aims to represent a simple linear response spectrum-based method which can acceptably predict the nonlinear displacements of a non-ductile RC shear wall structure subjected to an individual ground motion record. An effective period and an equivalent damping ratio are introduced as the dynamic characteristics of an equivalent linear SDOF system relevant to the main structure. By applying the fundamental mode participation factor of the original MDOF structure to the linear spectral response of the equivalent SDOF system, an acceptable estimation of the nonlinear displacement response is obtained. Subsequently, the accuracy of the proposed method is evaluated by comparison with another approximate method which is based on linear response spectrum. Results show that the proposed method has better estimations for maximum nonlinear responses and is more utilizable and applicable than the other one.

키워드

과제정보

This work has been supported by University of Tabriz, International and Academic Cooperation Directorate, in the framework of TabrizU-300 program.

참고문헌

  1. Ahmed, M. (2011), "Optimal reduction of inelastic seismic demands in high-rise RC core wall buildings using energy dissipating devices", PhD Thesis, Asian Institute of Technology (AIT), Thailand.
  2. Ahmed, M. and Warnitchai, P. (2012), "The cause of unproportionately large higher mode contributions in the inelastic seismic responses of high-rise core-wall buildings", Earthq. Eng. Struct. Dyn., 41(15), 2195-2214. https://doi.org/10.1002/eqe.2182.
  3. Alonso_Rodriguez, A. and Miranda, E. (2015), "Assessment of building behavior under near-fault pulse-like ground motions through simplified models", Soil Dyn. Earthq. Eng., 79, 47-58. https://doi.org/10.1016/j.soildyn.2015.08.009.
  4. Amirsardari, A. (2018), "Seismic assessment of reinforced concrete buildings in Australia including the response of gravity frames", PhD Thesis, Department of Infrastructure Engineering, The University of Melbourne, Melbourne, Australia.
  5. Amirsardari, A., Goldsworthy, H.M. and Lumantarna, E. (2017), "Seismic site response analysis leading to revised design response spectra for Australia", J. Earthq. Eng., 21(6), 861-890. https://doi.org/10.1080/13632469.2016.1210058.
  6. Amirsardari, A., Lumantarna, E., Rajeev, P. and Goldsworthy, H.M. (2020), "Seismic fragility assessment of nonductile reinforced concrete buildings in Australia", J. Earthq. Eng., 26(4), 1941-1975. https://doi.org/10.1080/13632469.2020.1750508.
  7. Amirsardari, A., Rajeev, P., Lumantarna, E. and Goldsworthy, H.M. (2019), "Suitable intensity measure for probabilistic seismic risk assessment of non‑ductile Australian reinforced concrete buildings", Bull. Earthq. Eng., 17, 3753-3775. https://doi.org/10.1007/s10518-019-00632-1.
  8. Brown, A. and Gibson, G. (2004), "A multi-tiered earthquake hazard model for Australia", Tectonophys., 390, 25-43. https://doi.org/10.1016/j.tecto.2004.03.019.
  9. Brozovic, M. and Dolsek, M. (2014), "Envelope-based pushover analysis procedure for the approximate seismic response analysis of buildings", Earthq. Eng. Struct. Dyn., 43, 77-96. https://doi.org/10.1002/eqe.2333.
  10. Celik, O.C. and Ellingwood, B.R. (2008), "Modeling beam-column joints in fragility assessment of gravity load designed reinforced concrete frames", J. Earthq. Eng., 12(3), 357-381. https://doi.org/10.1080/13632460701457215.
  11. Chopra, A.K. and Goel, R.K. (2002), "A modal pushover analysis procedure for estimating seismic demands for buildings", Earthq. Eng. Struct. Dyn., 31, 561-582. https://doi.org/10.1002/eqe.144.
  12. Chopra, A.K., Goel, R.K. and Chintanapakdee, C. (2004), "Evaluation of a modified MPA procedure assuming higher modes as elastic to estimate seismic demands", Earthq. Spectra, 20, 757-778. https://doi.org/10.1193/1.1775237.
  13. Chu, L., He, Y., Li, D., Ma, X. and Cheng, Z. (2020), "Structural performance of reinforced concrete wall with boundary columns under shear load", Struct. Eng. Mech., 76(4), 479-489. https://doi.org/10.12989/sem.2020.76.4.479.
  14. Elwood, K.J. and Moehle, J.P. (2003), "Shake table tests and analytical studies on the gravity load collapse of reinforced concrete frames", Pacific Earthquake Engineering Research Center, PEER Report 2003/01, University of California, Berkeley.
  15. FEMA 273 (1997), NEHRP Guidelines for the Seismic Rehabilitation of Buildings, Applied Technology Council (ATC-33 Project), Redwood City, California, October.
  16. Ferraioli, M. (2017), "Multi-mode pushover procedure for deformation demand estimates of steel moment-resisting frames", Int. J. Steel Struct., 17(2), 653-676. https://doi.org/10.1007/s13296-017-6022-8.
  17. Ferraioli, M., Lavino, A. and Mandara, A. (2016), "An adaptive capacity spectrum method for estimating seismic response of steel moment-resisting frames", Int. J. Earthq. Eng., 1(2), 47-60.
  18. Galal, K. and El-Sokkary, H. (2008), "Advancement in modeling of RC shear walls", 14th World Conference in Earthquake Engineering, Beijing, China, October.
  19. Ghannoum, W.M. and Moehle, J.P. (2012), "Dynamic collapse analysis of a concrete frame sustaining column axial failures", ACI Struct. J., 109(3), 403-412.
  20. Ha, T., Hong, S.G., Cho, B.H. and Kim, D.J. (2019), "Effective assessment of inelastic torsional deformation of plan-asymmetric shear wall systems", Appl. Sci.-Basel, 14, 2814. https://doi.org/10.3390/app9142814.
  21. Hashash, Y.M.A., Musgrove, M.I., Harmon, J.A., Groholski, D.R., Phillips, C.A. and Park, D. (2016), DEEPSOIL 6.1.
  22. Hassan, W.M. and Reyes, J.C. (2020), "Assessment of modal pushover analysis for mid-rise concrete buildings with and without viscous dampers", J. Build. Eng., 29, 1-18. https://doi.org/10.1016/j.jobe.2019.101103.
  23. Jeon, J.S., Lowes, L.N., DesRoches, R. and Brilakis, I. (2015), "Fragility curves for non-ductile reinforced concrete frames that exhibit different component response mechanisms", Eng. Struct., 85, 127-143. https://doi:10.1016/j.engstruct.2014.12.009.
  24. Khoshnoudian, F. and Kafaeikivi, M. (2011), "Evaluation of proposed lateral load pattern for estimating seismic demands on RC_tall buildings with shear walls in pushover analysis", Adv. Struct. Eng., 14(6), 1017-1029. https://doi.org/10.1260/1369-4332.14.6.1017.
  25. Kreslin, M. and Fajfar, P. (2011), "The extended N2 method taking into account higher mode effects in elevation", Eng. Struct. Dyn., 40, 1571-1589. https://doi.org/10.1002/eqe.1104.
  26. Lam, N.T.K. (1999), "GENQKE user's guide: Program for generating synthetic earthquake accelerograms based on stochastic simulations of seismological models", Department of Civil and Environmental Engineering, The University of Melbourne, Australia.
  27. Lepage, A. (1997), "A method for drift-control in earthquake-resistant design of RC building structures", Ph.D. Thesis, University of Illinois, Urbana-Champaign, Illinois.
  28. Liu, Y. and Kuang, J.S. (2017), "Spectrum-based pushover analysis for estimating seismic demand of tall buildings", Bull. Earthq. Eng., 15, 4193-214. https://doi.org/10.1007/s10518-017-0132-8.
  29. Liu, Y., Kuang, J.S. and Huang, Q.X. (2018), "Modified spectrum-based pushover analysis for estimating seismic demand of dual wall-frame systems", Eng. Struct., 165, 302-314. https://doi.org/10.1016/j.engstruct.2018.03.043.
  30. Matamoros, A., Browning, J. and Luft, M. (2003), "Evaluation of simple methods for estimating drift of reinforced concrete buildings subjected to earthquakes", Earthq. Spectra, 19, 839-861. https://doi.org/10.1193/1.1623781.
  31. MATLAB (1997), The Language of Technical Computing, Version 5.0, The Mathworks Inc., Natick, MA.
  32. McKenna, F., Fenves, G.L., Scott, M.N. and Jeremic, B. (2000), "Open system for earthquake engineering simulation (OpenSEES)", Version 2.4.5, Pacific earthquake engineering research center, university of California, Berkeley, CA. Accessed December 1, 2016. http://opensees.berkeley.edu/.
  33. Mehmood, T. (2015), "Investigation of nonlinear seismic response of high-rise RC wall structures using modal decomposition technique", PhD Thesis, Asian Institute of Technology (AIT), Thailand.
  34. Miranda, E. (1999), "Approximate seismic lateral deformation demands in multistory buildings", J. Struct. Eng., 125, 417-425. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:4(417).
  35. Miranda, E. and Taghavi, S. (2005), "Approximate floor acceleration demands in multistory buildings. I formulation", J. Struct. Eng., 131(2), 203-211. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:2(203).
  36. Najam, F. and Warnitchai, P. (2017), "A modified response spectrum analysis procedure to determine nonlinear seismic demands of high-rise buildings with shear walls", 16th World Conference on Earthquake, 16WCEE 2017, Santiago Chile, January.
  37. Park, S. and Mosalam, K.M. (2013), "Simulation of reinforced concrete frames with non-ductile beam-column joints", Earthq. Spectra, 29(1), 233-257. https://doi.org/10.1193/1.4000100.
  38. Poursha, M., Khoshnoudian, F. and Moghadam, A. (2009), "A consecutive modal pushover procedure for estimating the seismic demands of tall buildings", Eng. Struct., 31, 591-599. https://doi.org/10.1016/j.engstruct.2008.10.009.
  39. Priestley, M.J.N. (2003), "Does capacity design do the job? An examination of higher mode effects in cantilever walls", Bull. NZ Nat. Soc. Earthq. Eng., 36(4), 276-292. https://doi.org/10.5459/bnzsee.36.4.276-292.
  40. Priestley, M.J.N. and Amaris, A.D. (2002), "Dynamic amplification of seismic moments and shears in cantilever walls", Research Report No. ROSE-2002/01, European School for Advanced Studies in Reduction of Seismic Risk, Pavia, Italy.
  41. Rahmani, A.Y., Bourahla, N., Bento, R. and Badaoui, M. (2019), "Adaptive upper-bound pushover analysis for high-rise moment steel frames", Struct., 20, 912-923. https://doi.org/10.1016/j.istruc.2019.07.006.
  42. Rodriguez-Nikl, T. and Rodriguez, M.E. (2021), "Effect of displacement and hysteretic energy on earthquake damage in reinforced concrete structures", J. Struct. Eng., 147(7), 04021083. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003042.
  43. Sezen, H. and Moehle, J.P. (2004), "Shear strength model for lightly reinforced concrete columns", J. Struct. Eng., 130(11), 1692-1703. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:11(1692).
  44. Shibata, A. and Sozen, M. (1976), "Substitute-structure method for seismic design in R/C", J. Struct. Div., 102, 1-18. https://doi.org/10.1061/JSDEAG.0004250.
  45. Shimazaki, K. and Sozen, M. (1976), "Seismic drift of reinforced concrete structures", Technical Research Report of Hazama-Gumi, Ltd.
  46. Standards Australia (1983), Minimum Design Loads on Structures-Wind Loads, Standards Association of Australia, Sydney, NSW.
  47. Standards Australia (1988), AS 3600-1988: Concrete Structures, Standards Association of Australia, Sydney, NSW.
  48. Sucuoglu, H. and Gunay, M.S. (2011), "Generalized force vectors for multi-mode pushover analysis", Earthq. Eng. Struct. Dyn., 40, 55-74. https://doi.org/10.1002/eqe.1020.
  49. Sullivan, T.J., Priestley, M.J.N. and Calvi, G.M. (2007), "Estimating the higher-mode response of ductile structures", J. Earthq. Eng., 12, 456-472, https://doi.org/10.1080/13632460701512399.
  50. Yaghmaei_Sabegh, S., Neekmanesh, S. and Lumantarna, E. (2014), "Nonlinear response estimates of RC frames using linear analysis of SDOF systems", Earthq. Eng. Struct. Dyn., 43, 769-790. https://doi.org/10.1002/eqe.2371.
  51. Yukselis, C.E. and Isin, S.A. (2007), "Determination of collapse safety of shear wall-frame structures", Struct. Eng. Mech., 27(2), 135. https://doi.org/10.12989/sem.2007.27.2.135.