DOI QR코드

DOI QR Code

Wave propagation of graphene platelets reinforced metal foams circular plates

  • Lei-Lei Gan (College of Mechanical and Vehicle Engineering, Chongqing University) ;
  • Jia-Qin Xu (College of Mechanical and Vehicle Engineering, Chongqing University) ;
  • Gui-Lin She (College of Mechanical and Vehicle Engineering, Chongqing University)
  • 투고 : 2022.11.20
  • 심사 : 2023.02.08
  • 발행 : 2023.03.10

초록

Based on first-order shear deformation theory, a wave propagation model of graphene platelets reinforced metal foams (GPLRMFs) circular plates is built in this paper. The expressions of phase-/group- velocities and wave number are obtained by using Laplace integral transformation and Hankel integral transformation. The effects of GPLs pattern, foams distribution, GPLs weight fraction and foam coefficient on the phase and group velocity of GPLRMFs circular plates are discussed in detail. It can be inferred that GPLs distribution have great impacts on the wave propagation problems, and Porosity-I type distribution has the largest phase velocity and group velocity, followed by Porosity-III, and finally Porosity-II; With the increase of the GPLs weight fraction, the phase- and group- velocities for the GPLRMFs circular plate will be increased; With the increase of the foam coefficient, the phase- and group- velocities for the GPLRMFs circular plate will be decreased.

키워드

참고문헌

  1. Abazid, M.A., Zenkour, A.M. and Sobhy, M. (2020), "Wave propagation in FG porous GPLs-reinforced nanoplates under in-plane mechanical load and Lorentz magnetic force via a new quasi 3D plate theory", Mech. Bas. Des. Struct., 50(5), 1831-1850. https://doi.org/10.1080/15397734.2020.1769651.
  2. Al Mukahal, F.H.H. and Sobhy, M. (2021), "Wave propagation and free vibration of FG graphene platelets sandwich curved beam with auxetic core resting on viscoelastic foundation via DQM", Arch. Civil Mech. Eng., 22(1), 12. https://doi.org/10.1007/s43452-021-00322-3.
  3. Babaei, H. (2021), "On frequency response of FG-CNT reinforced composite pipes in thermally pre/post buckled configurations", Compos. Struct., 276, 114467. https://doi.org/10.1016/j.compstruct.2021.114467.
  4. Babaei, H. (2022a), "Nonlinear analysis of size‑dependent frequencies in porous FG curved nanotubes based on nonlocal strain gradient theory", Eng. Struct., 38(Suppl 3), S1717-S1734. https://doi.org/10.1007/s00366-021-01317-7.
  5. Babaei, H. (2022b), "Free vibration and snap-through instability of FG-CNTRC shallow arches supported on nonlinear elastic foundation", Appl. Math. Comput., 413, 126606. https://doi.org/10.1016/j.amc.2021.126606.
  6. Babaei, H. and Eslami, M.R. (2021a), "Nonlinear analysis of thermal-mechanical coupling bending of FGP infinite length cylindrical panels based on PNS and NSGT", Appl. Math. Model., 91, 1061-1080. https://doi.org/10.1016/j.apm.2020.10.004.
  7. Babaei, H. and Eslami, M.R. (2021b), "Nonlinear analysis of thermal-mechanical coupling bending of clamped FG porous curved micro-tubes", J. Therm. Stress., 44(4), 409-432. https://doi.org/10.1080/01495739.2020.1870417.
  8. Babaei, M., Kiarasi, F., Marashi, S.M.H., Ebadati, M., Masoumi, F. and Asemi, K. (2021), "Stress wave propagation and natural frequency analysis of functionally graded graphene platelet-reinforced porous joined conical-cylindrical-conical shell", Wave. Random Complex Media, 1-33. https://doi.org/10.1080/17455030.2021.2003478.
  9. Belarouci, A. and Fekrar, A. (2021), "A new quasi-3D theory for the study of the bending of thick FGM's plates on elastic foundation", Smart Struct. Syst., 27(5), 847-860. https://doi.org/10.12989/sss.2021.27.5.847.
  10. Beli, D., Rosa, M.I.N., De Marqui, C. and Ruzzene, M. (2022), "Wave beaming and diffraction in quasicrystalline elastic metamaterial plates", Phys. Rev. Res., 4(4), 043030. https://doi.org/10.1103/PhysRevResearch.4.043030.
  11. Belkhodja, Y., Ouinas, D., Fekirini, H., Vina Olay, J.A., Achour, B., Touahmia, M. and Boukendakdji, M. (2022), "A new hybrid HSDT for bending, free vibration, and buckling analysis of FGM plates (2D & quasi-3D)", Smart Struct. Syst., 29(3), 395-420. https://doi.org/10.12989/sss.2022.29.3.39.
  12. Chapman, C.J. and Sorokin, S.V. (2022), "A Poisson scaling approach to backward wave propagation in a tube", Philos. Tran. Royal Soc. A., 380(2231), 20210386. https://doi.org/10.1098/rsta.2021.0386.
  13. Chen, T., Zhang, X.M., Zhou, H.M. and Yu, J.G. (2020), "Characteristics of complete circumferential guided wave in a piezoelectric semiconductor cylindrical shell", J. Intel. Mater. Syst. Struct., 1045389X221121910. https://doi.org/10.1177/1045389X221121910.
  14. Chen, X., Zhao, J.L., She, G.L., Jing, Y., Luo, J. and Pu, H.Y. (2022a), "On wave propagation of functionally graded CNT strengthened fluid-conveying pipe in thermal environment", Eur. Phys. J. Plus, 137(10), 1158. https://doi.org/10.1140/epjp/s13360-022-03234-0.
  15. Chen, X., Zhao, J.L., She, G.L., Jing, Y., Pu, H.Y. and Luo, J. (2022b), "Nonlinear free vibration analysis of functionally graded carbon nanotube reinforced fluid-conveying pipe in thermal environment", Steel Compos. Struct., 45(5), 641-652. https://doi.org/10.12989/scs.2022.45.5.641.
  16. Ding, H.X. and She, G.L. (2021), "A higher-order beam model for the snap-buckling analysis of FG pipes conveying fluid", Struct. Eng. Mech., 80(1), 63-72. http://doi.org/10.12989/sem.2021.80.1.063.
  17. Ding, H.X., She, G.L. and Zhang, Y.W. (2022a), "Nonlinear buckling and resonances of functionally graded fluid-conveying pipes with initial geometric imperfection", Eur. Phys. J. Plus, 137, 1329. https://doi.org/10.1140/epjp/s13360-022-03570-1.
  18. Ding, H.X., Zhang, Y.W. and She, G.L. (2022b), "On the resonance problems in FG-GPLRC beams with different boundary conditions resting on elastic foundations", Comput. Concrete, 30(6), 433-443. https://doi.org/10.12989/cac.2022.30.6.433.
  19. Ebrahimi, F., Mohammadi, K., Barouti, M.M. and Habibi, M. (2021), "Wave propagation analysis of a spinning porous graphene nanoplatelet-reinforced nanoshell", Wave. Random Complex Media, 31(6), 1655-1681. https://doi.org/10.1080/17455030.2019.1694729.
  20. Gao, K., Gao, W., Chen, D. and Yang, J. (2018), "Nonlinear free vibration of functionally graded graphene platelets reinforced porous nanocomposite plates resting on elastic foundation", Compos. Struct., 204, 831-846. https://doi.org/10.1016/j.compstruct.2018.08.013.
  21. Gao, W.L., Liu, Y.F., Qin, Z.Y. and Chu, F.L. (2022a), "Wave propagation in smart sandwich plates with functionally graded nanocomposite porous core and piezoelectric layers in multiphysics environment", Int. J. Appl. Mech., 14(07), 2250071. https://doi.org/10.1142/S1758825122500715.
  22. Gu, C.L., Ma, L.S., Ou, Z.Y. and Lei, F.M. (2022), "Propagation characteristics of lamb waves in a functionally graded material plate with periodic gratings", Mech. Adv. Mater. Struct., 1-10. https://doi.org/10.1080/15376494.2022.2140461.
  23. Hadji, L. and Tounsi, A. (2021), "Static deflections and stress distribution of functionally graded sandwich plates with porosity", Smart Struct. Syst., 28(3), 343-354. https://doi.org/10.12989/sss.2021.28.3.343.
  24. Hashemi-Nejad, H., Saidi, A.R. and Bahaadini, R. (2022), "Wave propagation in rotating thin-walled porous blades reinforced with graphene platelets", ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift fur Angewandte Mathematik und Mechanik, 102(9), e202100502. https://doi.org/10.1002/zamm.202100502.
  25. Hosseini, S.M. and Zhang, C.Z. (2018), "Elastodynamic and wave propagation analysis in a FG graphene platelets-reinforced nanocomposite cylinder using a modified nonlinear micromechanical model", Steel. Compos. Struct., 27(3), 255-271. https://doi.org/10.12989/scs.2018.27.3.255.
  26. Hu, B., Liu, J., Wang, Y.X., Zhang, B. and Shen, H.M. (2021a), "Wave propagation in graphene reinforced piezoelectric sandwich nanoplates via high-order nonlocal strain gradient theory", Acta Mechanica Sinica, 37(9), 1446-1456. https://doi.org/10.1007/s10409-021-01113-y.
  27. Hu, B., Liu, J., Zhang, B. and Shen, H.M. (2021b), "Wave propagation in graphene platelet-reinforced piezoelectric sandwich composite nanoplates with nonlocal strain gradient effects", Acta Mechanica Solida Sinica, 34(4), 494-505. https://doi.org/10.1007/s10338-021-00230-2.
  28. Karami, B., Gheisari, P., Nazemosadat, S.M.R., Akbari, P., Shahsavari, D. and Naghizadeh, M. (2020), "Elastic wave characteristics of graphene nanoplatelets reinforced composite nanoplates", Struct. Eng. Mech., 74(6), 809-819. https://doi.org/10.12989/sem.2020.74.6.809.
  29. Li, C.L., Han, Q., Wang, Z. and Wu, X. (2020), "Analysis of wave propagation in functionally graded piezoelectric composite plates reinforced with graphene platelets", Appl. Math. Model., 81, 487-505. https://doi.org/10.1016/j.apm.2020.01.016.
  30. Li, H., Li, Y.L. and Liu, X. (2023), "Double-beam metastructure with inertially amplified resonators for flexural wave attenuation", Eur. J. Mech. A-Solid., 97, 104794. https://doi.org/10.1016/j.euromechsol.2022.104794.
  31. Li, Y.L., Deng, Z., Yan, G.W. and Gao, G.J. (2022), "Wave propagation in two-dimensional elastic metastructures with triangular configuration", Thin Wall. Struct., 181, 110043. https://doi.org/10.1016/j.tws.2022.110043.
  32. Liang, C. and Wang, Y.Q. (2020), "Wave propagation in three-dimensional graphene aerogel cylindrical shells resting on Winkler-Pasternak elastic foundation", J. Mech. Mater. Struct., 15(4), 435-455. https://doi.org/10.2140/jomms.2020.15.435.
  33. Liu, S., Han, Q., Ma, N.F. and Li, C.L. (2022), "Modulation of elastic wave propagation in piezoelectric laminated nanocomposite shells considering agglomeration effects", Acta Mechanica, 1-25. https://doi.org/10.1007/s00707-022-03367-4.
  34. Liu, Y.F., Hu, W.Y., Zhu, R.Z., Safaei, B., Qin, Z.Y. and Chu, F.L. (2022), "Dynamic responses of corrugated cylindrical shells subjected to nonlinear low-velocity impact", Aerosp. Sci. Technol., 121, 107321. https://doi.org/10.1016/j.ast.2021.107321.
  35. Lu, L., She, G.L. and Guo, X. (2021), "Size-dependent postbuckling analysis of graphene reinforced composite microtubes with geometrical imperfection", Int. J. Mech. Sci., 199, 106428. https://doi.org/10.1016/j.ijmecsci.2021.106428.
  36. Mosayyebi, M., Ghasemi, F.A., Vahdat, M. and Aghaee, M. (2022), "Wave propagation of the viscoelastic FG-GPLRPC microplate via sinusoidal shear deformation theory (SSDT) and modified coupled stress theory (MCST)", Wave. Random Complex Media, 1-25. https://doi.org/10.1080/17455030.2021.2024298.
  37. Nie, G.Q., Lei, Z.Y., Liu, J.X. and Zhang, L.L. (2022), "Bending waves localized along the edge of a semi-infinite piezoelectric plate with orthogonal symmetry", Front. Mater., 9, 1031538. https://doi.org/10.3389/fmats.2022.1031538.
  38. Osika, M., Ziaja-Sujdak, A., Radecki, R., Cheng, L. and Staszewski, W.J. (2022), "Nonlinear modes in shear horizontal wave propagation-analytical and numerical analysis", J. Sound. Vib., 540, 117247. https://doi.org/10.1016/j.jsv.2022.117247.
  39. Padhan, M.K. and Mitra, M. (2022), "Study of in-plane wave propagation in 2-D polycrystalline microstructure", Mech. Adv. Mater. Struct., 1-13. https://doi.org/10.1080/15376494.2022.2126038.
  40. Pathania, V. and Dhiman, P. (2022), "Generalized thermoelastic waves in a homogeneous anisotropic plate with voids", ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift fur Angewandte Mathematik und Mechanik, 103(1), e202200161. https://doi.org/10.1002/zamm.202200161.
  41. She, G.L. (2020), "Wave propagation of FG polymer composite nanoplates reinforced with GNPs", Steel Compos. Struct., 37(1), 27-35. https://doi.org/10.12989/scs.2020.37.1.027.
  42. She, G.L. (2021), "Guided wave propagation of porous functionally graded plates: The effect of thermal loadings", J. Therm. Stress., 44(10), 1289-1305. https://doi.org/10.1080/01495739.2021.1974323.
  43. She, G.L. and Ding, H.X. (2023), "Nonlinear primary resonance analysis of initially stressed graphene platelet reinforced metal foams doubly curved shells with geometric imperfection", Acta Mechanica Sinica, 39, 522392. https://doi.org/10.1007/s10409-022-22392-x.
  44. She, G.L. and Li, Y.P. (2022), "Wave propagation in an FG circular plate in thermal environment", Geomech. Eng., 31(6), 615-622. https://doi.org/10.12989/gae.2022.31.6.615.
  45. She, G.L., Ding, H.X. and Zhang, Y.W. (2022), "Wave propagation in a FG circular plate via the physical neutral surface concept", Struct. Eng. Mech., 82(2), 225-232. https://doi.org/10.12989/sem.2022.82.2.225.
  46. She, G.L., Liu, H.B. and Karami, B. (2021), "Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets", Thin Wall. Struct., 160, 107407. https://doi.org/10.1016/j.tws.2020.107407.
  47. Sobhy, M. and Al Mukahal, F.H.H. (2022), "Wave dispersion analysis of functionally graded GPLs-Reinforced sandwich piezoelectromagnetic plates with a honeycomb core", Math.- Basel, 10(17), 3207. https://doi.org/10.3390/math10173207.
  48. Sun, D. and Luo, S.N. (2012), "Wave propagation and transient response of a functionally graded material plate under a point impact load in thermal environments", Appl. Math. Model., 36(1), 444-462. https://doi.org/10.1016/j.apm.2011.07.023.
  49. Wang, Y.W. and Wu, D.F. (2017), "Free vibration of functionally graded porous cylindrical shell using a sinusoidal shear deformation theory", Aerosp. Sci. Technol., 66, 83-91. https://doi.org/10.1016/j.ast.2017.03.003.
  50. Wang, Y.W., Xie, K., Fu, T.R. and Shi, C.L. (2019), "Vibration response of a functionally graded graphene nanoplatelet reinforced composite beam under two successive moving masses", Compos. Struct., 209, 928-939. https://doi.org/10.1016/j.compstruct.2018.11.014.
  51. Xu, J.Q. and She, G.L. (2022), "Thermal post-buckling analysis of porous functionally graded pipes with initial geometric imperfection", Geomech. Eng., 31(3), 329-337. https://doi.org/10.12989/gae.2022.31.3.329.
  52. Yang, B., Yang, J. and Kitipornchai, S. (2017), "Thermoelastic analysis of functionally graded graphene reinforced rectangular plates based on 3D elasticity", Meccanica, 52(10), 2275-2292. https://doi.org/10.1007/s11012-016-0579-8.
  53. Yuan, Q., Fan, K.Q. and Wang, Y. (2023), "Phased array guided wave propagation in curved plates", Mech. Syst. Signal Pr., 185, 109821. https://doi.org/10.1016/j.ymssp.2022.109821.
  54. Zenkour, A.M., Sobhy, M. (2021), "Axial magnetic field effect on wave propagation in bi-layer FG graphene platelet-reinforced nanobeams", Eng. Comput.-Germany, 38(SUPPL 2), 1313-1329. https://doi.org/10.1007/s00366-020-01224-3.
  55. Zhang, Y.W. and She, G.L. (2022), "Wave propagation and vibration of FG pipes conveying hot fluid", Steel. Compos, Struct., 42(3) 397-405. https://doi.org/10.12989/scs.2022.42.3.397.
  56. Zhang, Y.W. and She, G.L. (2023), "Nonlinear low-velocity impact response of graphene platelet-reinforced metal foam cylindrical shells under axial motion with geometrical imperfection", Nonlin. Dyn., 1-18. https://doi.org/10.1007/s11071-022-08186-9.
  57. Zhang, Y.W., Ding, H.X. and She, G.L. (2022), "Snap-buckling and resonance of functionally graded graphene reinforced composites curved beams resting on elastic foundations in thermal environment", J. Therm. Stress., 45(12), 1029-1042. https://doi.org/10.1080/01495739.2022.2125137.
  58. Zhang, Y.W., Ding, H.X. and She, G.L. (2023a), "Wave propagation in spherical and cylindrical panels reinforced with carbon nanotubes", Steel Compos. Struct., 46(1), 133-141. https://doi.org/10.12989/scs.2023.46.1.133.
  59. Zhang, Y.W., She, G.L. and Ding, H.X. (2023b), "Nonlinear resonance of graphene platelets reinforced metal foams plates under axial motion with geometric imperfections", Eur. J. Mech. A-Solid., 98, 104887. https://doi.org/10.1016/j.euromechsol.2022.104887.
  60. Zhang, Y.Y., Wang, X.Y., Zhang, X., Shen, H.M. and She, G.L. (2021), "On snap-buckling of FG-CNTRC curved nanobeams considering surface effects", Steel Compos. Struct., 38(3), 293-304. https://doi.org/10.12989/scs.2021.38.3.293.
  61. Zhao, J.L., Chen, X., She, G.L., Jing, Y., Bai, R.Q., Yi, J., Pu, H.Y. and Luo, J. (2022a), "Vibration characteristics of functionally graded carbon nanotube-reinforced composite double-beams in thermal environments", Steel. Compos. Struct., 43(6), 797-808. https://doi.org/10.12989/scs.2022.43.6.797.
  62. Zhao, J.L., She, G.L., Wu, F., Yuan, S.J., Bai, R.Q., Pu, H.Y., Wang, S.L. and Luo, J. (2022b), "Guided waves of porous FG nanoplates with four edges clamped", Adv. Nano. Res., 13(5), 465-474. https://10.12989/anr.2022.13.5.465.
  63. Zima, B. and Moll, J. (2022), "Numerical and experimental investigation of guided ultrasonic wave propagation in nonuniform plates with structural phase variations", Ultrasonic., 128, 106885. https://doi.org/10.1016/j.ultras.2022.106885.