DOI QR코드

DOI QR Code

Geophysical Evidence Indicating the Presence of Gas Hydrates in a Mud Volcano(MV420) in the Canadian Beaufort Sea

캐나다 보퍼트해 진흙화산(MV420) 내 가스하이드레이트 부존을 지시하는 지구물리학적 증거

  • Yeonjin Choi (Division of Earth Sciences, Korea Polar Research Institute) ;
  • Young-Gyun Kim (Research Institute of Earth Resources, Kangwon National University) ;
  • Seung-Goo Kang (Division of Earth Sciences, Korea Polar Research Institute) ;
  • Young Keun Jin (Division of Earth Sciences, Korea Polar Research Institute) ;
  • Jong Kuk Hong (Division of Earth Sciences, Korea Polar Research Institute) ;
  • Wookeen Chung (Department of Energy & Resources Engineering, Korea Maritime & Ocean University) ;
  • Sung-Ryul Shin (Department of Energy & Resources Engineering, Korea Maritime & Ocean University)
  • 최연진 (한국해양과학기술원 부설 극지연구소 지권연구본부 ) ;
  • 김영균 (강원대학교 지구자원연구소 ) ;
  • 강승구 (한국해양과학기술원 부설 극지연구소 지권연구본부) ;
  • 진영근 (한국해양과학기술원 부설 극지연구소 지권연구본부 ) ;
  • 홍종국 (한국해양과학기술원 부설 극지연구소 지권연구본부 ) ;
  • 정우근 (한국해양대학교 에너지자원공학과 ) ;
  • 신성렬 (한국해양대학교 에너지자원공학과 )
  • Received : 2023.02.02
  • Accepted : 2023.02.22
  • Published : 2023.02.28

Abstract

Submarine mud volcanos are topographic features that resemble volcanoes, and are formed due to eruptions of fluidized or gasified sediment material. They have gained attention as a source of subsurface heat, sediment, or hydrocarbons supplied to the surface. In the continental slope of the Canadian Beaufort Sea, mud volcano exists at various water depths. The MV420, is an active mud volcano erupting at a water depth of 420 meters, and it has been the subject of extensive study. The Korea Polar Research Institute(KOPRI) collected high-resolution seismic data and heat flow data around the caldera of the mud volcano. By analyzing the multi-channel seismic data, we confirmed the reverse-polarity reflector assumed by a gas hydrate-related bottom simulating reflector(BSR). To further elucidate the relationship between the BSR and gas hydrates, as well as the thermal structure of the mud volcano, a numerical geothermal model was developed based on the steady-state heat equation. Using this model, we estimated the base of the gas hydrate stability zone and found that the BSR depth estimated by multi-channel seismic data and the bottom of the gas hydrate stability zone were in good agreement., This suggests the presence of gas hydrates, and it was determined that the depth of the gas hydrate was likely up to 50 m, depending on the distance from the mud conduit. Thus, this depth estimate slightly differs from previous studies.

해저 진흙화산은 유동화/기화된 퇴적물이 표층으로 분출하여 만들어진 화산과 유사한 지형이다. 진흙화산은 지하의 열, 퇴적물이나 탄화수소를 지상으로 공급하는 공급원으로 관심을 받고 있다. 북극 캐나다 보퍼트 해의 대륙사면에는 다양한 수심에서 진흙화산이 존재한다고 알려져 있다. 수심 420 m에 위치한 MV420 진흙화산은 현재 분출하고 있는 활동성 진흙화산으로 많은 연구 대상이 되고 있다. 극지연구소에서는 쇄빙연구선 아라온호를 이용하여 MV420을 통과하는 고해상도 다중채널 탄성파 자료를 획득하였고, 진흙 분출구 주변에서 지열 관측을 수행하였다. 탄성파 자료에서는 가스하이드레이트에 의한 해저면모사반사파(bottom simulating reflector, BSR)로 추정되는 역위상 반사파를 확인하였다. 탄성파 자료의 BSR이 가스하이드레이트에 의한 반사파인지 확인하기 위하여, 정상 상태의 열방정식을 바탕으로 MV420 내부의 열구조를 수치적으로 모사하였다. 그리고 모사한 지열온도 모델을 이용하여 가스하이드레이트 안정영역의 하부 경계를 추정하였다. BSR의 깊이와 가스하이드레이트 안정영역의 하부 경계를 비교한 결과, 두 자료가 일치하며 이는 가스하이드레이트의 부존을 암시하는 지구물리학적 증거 중의 하나이다. 선행 연구 결과는 MV420의 분출구에서 표층에 가스하이드레이트가 부존한다는 것을 보여주었으며, 이번 연구의 결과는 분출구와의 거리에 따라 최대 50 m 깊이까지 가스하이드레이트가 존재할 수 있음을 시사한다.

Keywords

Acknowledgement

이 논문은 한국해양과학기술원 부설 극지연구소에서 해양수산부의 재원으로 수행하는 극지 해양환경 및 해저조사 연구사업(R&D) '북극해 해저지질 조사 및 해저환경 변화 연구(과제번호: 20210632)'의 지원을 받았으며, 저자 중에서 김영균은 한국 연구재단 지원(NRF No. 2019R1A6A03033167, No. 2020R1C1C1007495)의 지원을 받았습니다. 또한 논문의 수정과 보완에 많은 조언을 해주신 편집위원장님과 익명의 심사위원분들께 감사드립니다

References

  1. Berndt, C., Bunz, S., Clayton, T., Mienert, J., and Saunders, M., 2004, Seismic character of bottom simulating reflectors: examples from the mid-Norwegian margin, Marine and Petroleum Geology, 21(6), 723-733. doi: 10.1016/j.marpetgeo.2004.02.003
  2. Choi, Y., Kang, S.-G., Jin, Y. K., Hong, J. K., Shin, S.-R., Kim, S., and Choi, Y., 2022, Estimation of the gas hydrate saturation from multichannel seismic data on the western continental margin of the Chukchi Rise in the Arctic Ocean, Frontiers in Earth Science, 10, 1025110. doi: 10.3389/feart.2022.1025110
  3. Collett, T. S., Lee, M. W., Agena, W. F., Miller, J. J., Lewis, K. A., Zyrianova, M. V., Boswell, R., and Inks, T. L., 2011, Permafrost-associated natural gas hydrate occurrences on the Alaska North Slope, Marine and Petroleum Geology, 28(2), 279-294. doi: 10.1016/j.marpetgeo.2009.12.001
  4. Cook, F. A., Coflin, K. C., Lane, L. S., Dietrich, J. R., and Dixon, J., 1987, Structure of the southeast margin of the Beaufort-Mackenzie basin, Arctic Canada, from crustal seismic-reflection data, Geology, 15(10), 931-935. https://ui.adsabs.harvard.edu/abs/1987Geo....15..931C/abstract https://doi.org/10.1130/0091-7613(1987)15<931:SOTSMO>2.0.CO;2
  5. Crane, K., Vogt, P. R., Sundvor, E., Shor, A., and IV, T. R., 1995, SeaMARC II investigations in the northern Norwegian-Greenland Sea. Meddelelser Norsk, Polarinstitutt, 13732-140.
  6. Dallimore, S. R., Collett, T. S., Taylor, A. E., Uchida, T., Weber, M., Chandra, A., Mroz, T. H., Caddel, E. M., and Inoue, T., 2005, Scientific results from the Mallik 2002 gas hydrate production research well program, Mackenzie Delta, northwest territories, Canada: Preface, Bulletin of the Geological Survey of Canada, 585. https://pubs.er.usgs.gov/publication/70027941
  7. Depreiter, D., Poort, J., Rensbergen, P. V., and Henriet, J. P., 2005, Geophysical evidence of gas hydrates in shallow submarine mud volcanoes on the Moroccan margin, Journal of Geophysical Research, 110, B10103. doi: 10.1029/2005JB003622
  8. Dickens, G. R., and Quinby-Hunt, M. S., 1994, Methane hydrate stability in seawater, Geophysical Research Letters, 21(19), 2115-2118. doi: 10.1029/94GL01858
  9. Dimitrov, L. I. 2002a, Mud volcanoes-the most important pathway for degassing deeply buried sediments, EarthScience Reviews, 59(1-4), 49-76. doi: 10.1016/S0012-8252(02)00069-7
  10. Dimitrov, L., 2002b, Contribution to atmospheric methane by natural seepages on the Bulgarian continental shelf, Continental Shelf Research, 22(16), 2429-2442. doi: 10.1016/S0278-4343(02)00055-9
  11. Espinoza-Ojeda, O. M., Macias, J. L., Gomez-Arias, E., Muniz-Jauregui, J. A., Rivera-Calderon, E., Figueroa-Soto, A. G., Vazquez-Rosas, R., and Garduno-Monroy, V. H., 2021, A two-dimensional temperature field simulation of the La Primavera geothermal area, Mexico. Geothermics, 96102201. doi: 10.1016/j.geothermics.2021.102201
  12. Evans, R. J., Stewart, S. A., and Davies, R. J., 2007, Phase-reversed seabed reflections in seismic data: examples related to mud volcanoes from the South Caspian Sea, Geo-Marine Letters, 27(2-4), 203-212. doi: 10.1007/s00367-007-0073-3
  13. Feseker, T., Foucher, J.-P., and Harmegnies, F., 2008, Fluid flow or mud eruptions? Sediment temperature distributions on Hakon Mosby mud volcano, SW Barents Sea slope, Marine Geology, 247(3-4), 194-207. doi: 10.1016/j.margeo.2007.09.005
  14. Ginsburg, G. D., Milkov, A. V., Soloviev, V. A., Egorov, A. V., Cherkashev, G. A., Vogt, P. R., Crane, K., Lorenson, T. D., and Khutorskoy, M. D., 1999, Gas hydrate accumulation at the Hakon Mosby Mud Volcano, Geo-Marine Letters, 19(1-2), 57-67. doi: 10.1007/s003670050093
  15. Hollis, D. H., 1974, Relation of Methane Generation to Undercompacted Shales, Shale Diapirs, and Mud Volcanoes, AAPG Bulletin, 58, 661-673. https://doi.org/10.1306/83D91466-16C7-11D7-8645000102C1865D
  16. Jakobsson, M., Grantz, A., Kristoffersen, Y., and Macnab, R., 2003, Physiographic provinces of the Arctic Ocean seafloor, Geological Society of America Bulletin, 115(12), 1443-1455. doi: 10.1130/B25216.1
  17. Jang, J. K., Koo, H. J., and Cho, H. G., 2019, Clay Mineral Characteristics of 420 MV (Mud Volcano) in Beaufort Sea, Arctic Ocean, Journal of the Mineralogical Society of Korea, 32(1), 51-61. https://doi.org/10.9727/jmsk.2019.32.1.51
  18. Jin, Y. K., and Dallimore, S. R., 2016, ARA05C Marine Research Expedition Canada-Korea-USA Beaufort Sea Geoscience Research Program: summary of 2014 activities. https://doi.org/10.4095/297866
  19. Jin, Y. K., and Onboard Ship Scientific Party, 2018, ARA08C Cruise Report : 2017 Korea-Russia-Germany East Siberian Sea Research Program. Incheon: Korea Polar Research Institute.
  20. Kang, S.-G., Jang, U., Kim, S., Choi, Y., Kim, Y.-G., Hong, J. K., and Jin, Y. K., 2021a, Exploration of the Gas Hydrates on the Southwestern Continental Slope of the Chukchi Plateau in the Arctic Ocean, Journal of the Korean Society of Mineral and Energy Resources Engineers, 58(5), 418-432. https://www.jksmer.or.kr/articles/article/m4Jz/ https://doi.org/10.32390/ksmer.2021.58.5.418
  21. Kang, S.-G., Jin, Y. K., Jang, U., Duchesne, M. J., Shin, C., Kim, S., Riedel, M., Dallimore, S. R., Paull, C. K., Choi, Y., and Hong, J. K., 2021b, Imaging the P-Wave Velocity Structure of Arctic Subsea Permafrost Using Laplace-Domain Full-Waveform Inversion, Journal of Geophysical Research: Earth Surface, 126(3), e2020JF00594. doi: 10.1029/2020JF005941
  22. Kim, Y.-G., Jin, Y. K., Hong, J. K., Paull, C., Caress, D., Jang, C., and So, B.-D., 2022, Thermal structure and sediment bulk density of the MV420 mud volcano on the continental slope of the Canadian Beaufort Sea and its implications for the plumbing system, Frontiers in Earth Science, 10, 963580. doi: 10.3389/feart.2022.963580
  23. Kim, Y.-G., Jin, Y. K., Kim, S., Kang, S.-G., and Hong, J. K., 2018, Occurrence of Ice-Bonded Sediments in the Mackenzie Trough, Beaufort Sea, Current Science, 115(9), 1669-1673. doi: 10.18520/cs/v115/i9/1669-1673
  24. Kvenvolden, K. A., Ginsburg, G. D., and Soloviev, V. A., 1993, Worldwide distribution of subaquatic gas hydrates, Geo-Marine Letters, 13(1), 32-40. https://link.springer.com/article/10.1007/BF01204390
  25. Kvenvolden, K. A., and Barnard, L. A., 1983, Gas Hydrates of the Blake Outer Ridge Site 533, Deep Sea Drilling Project Leg 76. In Initial Reports of the Deep Sea Drilling Project, 76: Initial Reports of the Deep Sea Drilling Project, U.S. Government Printing Office. doi: 10.2973/dsdp.proc.76.106.1983
  26. Kvenvolden, K. A., 1994, Natural Gas Hydrate Occurrence and Issues, Annals of the New York Academy of Sciences, 715(1 Natural Gas H), 232-246. doi: 10.1111/j.1749-6632.1994.tb38838.x
  27. Milkov, A. V., 2004, Global estimates of hydrate-bound gas in marine sediments: how much is really out there, Earth-Science Reviews, 66(3-4), 183-197. doi: 10.1016/j.earscirev.2003.11.002
  28. Pape, T., Feseker, T., Kasten, S., Fischer, D., and Bohrmann, G., 2011. Distribution and abundance of gas hydrates in near-surface deposits of the Hakon Mosby Mud Volcano, SW Barents Sea, Geochemistry, Geophysics, Geosystems, 12(9), Q09009. doi: 10.1029/2011GC003575
  29. Paull, C. K., Dallimore, S. R., Caress, D. W., Gwiazda, R., Melling, H., Riedel, M., Jin, Y. K., Hong, J. K., Kim, Y., Graves, D., Sherman, A., Lundsten, E., Anderson, K., Lundsten, L., Villinger, H., Kopf, A., Johnson, S. B., Hughes Clarke, J., Blasco, S., Conway, K., Neelands, P., Thomas, H., and Cote, M., 2015, Active mud volcanoes on the continental slope of the Canadian Beaufort Sea, Geochemistry, Geophysics, Geosystems, 16(9), 3160-3181. doi: 10.1002/2015GC005928
  30. Paull, C. K., Dallimore, S. R., Caress, D. W., Gwiazda, R., Lundsten, E., Anderson, K., Melling, H., Jin, Y. K., Duchesne, M. J., Kang, S.-G., Kim, S., Riedel, M., King, E. L., and Lorenson, T., 2021, A 100-km wide slump along the upper slope of the Canadian Arctic was likely preconditioned for failure by brackish pore water flushing, Marine Geology, 435, 106453. doi: 10.1016/j.margeo.2021.106453
  31. Perez-Garcia, C., Feseker, T., Mienert, J., and Berndt, C., 2009, The Hakon Mosby mud volcano: 330 000 years of focused fluid flow activity at the SW Barents Sea slope, Marine Geology, 262(1-4), 105-115. doi: 10.1016/j.margeo.2009.03.022
  32. Putra, S. D. H., Fajar, S. J., and Srigutomo, W., 2014, Numerical Modeling of 2-D Conductive Heat Transfer and Its Application for the Characterization of Geothermal Systems, Proceedings of the 2014 International Conference on Physics, 51-61. doi: 10.2991/icp-14.2014.13
  33. Riedel, M., Hong, J. K., Jin, Y. K., Rohr, K. M. M., and Cote, M. M., 2016, First results on velocity analyses of multichannel seismic data acquired with the icebreaker RV Araon across the southern Beaufort Sea, offshore Yukon. Current Research. https://emrlibrary.gov.yk.ca/gsc/current_research/2016-3.pdf
  34. Riedel, M., Brent, T. A., Taylor, G., Taylor, A. E., Hong, J.-K., Jin, Y.-K., and Dallimore, S. R., 2017, Evidence for gas hydrate occurrences in the Canadian Arctic Beaufort Sea within permafrost-associated shelf and deep-water marine environments, Marine and Petroleum Geology, 81, 66-78. doi: 10.1016/j.marpetgeo.2016.12.027
  35. Riedel, M., Willoughby, E. C., and Chopra, S., 2010, Geophysical Characterization of Gas Hydrates, Society of Exploration Geophysicists. doi: 10.1190/1.9781560802197
  36. Riedel, M., King, E. L., Cameron, G. D. M., Blasco, S., Conway, K. W., Dallimore, S. R., Rohr, K. M. M., Jin, Y. K., and Hong, J. K., 2021, A chronology of post-glacial mass-transport deposits on the Canadian Beaufort Slope, Marine Geology, 433, 106407. doi: 10.1016/j.margeo.2020.106407
  37. Ryu, B.-J., Riedel, M., Kim, J.-H., Hyndman, R. D., Lee, Y.-J., Chung, B.-H., and Kim, I.-S., 2009, Gas hydrates in the western deep-water Ulleung Basin, East Sea of Korea, Marine and Petroleum Geology, 26(8), 1483-1498. doi: 10.1016/j.marpetgeo.2009.02.004
  38. Shakhova, N., Semiletov, I., Gustafsson, O., Sergienko, V., Lobkovsky, L., Dudarev, O., Tumskoy, V., Grigoriev, M., Mazurov, A., Salyuk, A., Ananiev, R., Koshurnikov, A., Kosmach, D., Charkin, A., Dmitrevsky, N., Karnaukh, V., Gunar, A., Meluzov, A., and Chernykh, D., 2017, Current rates and mechanisms of subsea permafrost degradation in the East Siberian Arctic Shelf, Nat Commun., 8(1), 15872. doi: 10.1038/ncomms15872
  39. Taylor, A. E., Dallimore, S. R., Hill, P. R., Issler, D. R., Blasco, S., and Wright, F., 2013, Numerical model of the geothermal regime on the Beaufort Shelf, arctic Canada since the Last Interglacial, Journal of Geophysical Research: Earth Surface, 118(4), 2365-2379. doi: 10.1002/2013JF002859
  40. Tinivella, U., and Giustiniani, M., 2012, An Overview of Mud Volcanoes Associated to Gas Hydrate System. In Updates in Volcanology - New Advances in Understanding Volcanic Systems, InTech. https://www.intechopen.com/chapters/38733
  41. Wan, Z., Luo, J., Yang, X., Zhang, W., Liang, J., Zuo, L., and Sun, Y., 2022, The Thermal Effect of Submarine Mud Volcano Fluid and Its Influence on the Occurrence of Gas Hydrates, Journal of Marine Science and Engineering, 10(6), 832. doi: 10.3390/jmse10060832
  42. Wang, Y., and Pang, Z., 2022, Heat flux in volcanic and geothermal areas: Methods, principles, applications and future directions, Gondwana Research, in press. doi: 10.1016/j.gr.2022.09.010
  43. Xing, J., and Spiess, V., 2015, Shallow gas transport and reservoirs in the vicinity of deeply rooted mud volcanoes in the central Black Sea, Marine Geology, 369, 67-78. doi: 10.1016/j.margeo.2015.08.005
  44. Yilmaz, O., 2001, Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic Data. SEG Books. https://library.seg.org/doi/book/10.1190/1.9781560801580