DOI QR코드

DOI QR Code

한국 노인의 성별에 따른 수산물 섭취 수준과 노쇠 위험성의 상관성 연구: 제 7기 (2016-2018) 국민건강영양조사 자료를 이용하여

Association between seafood intake and frailty according to gender in Korean elderly: data procured from the Seventh (2016-2018) Korea National Health and Nutrition Examination Survey

  • 장원 (이화여자대학교 식품영양학과) ;
  • 최예지 (이화여자대학교 임상바이오헬스대학원 임상영양학전공) ;
  • 조정희 (한국해양수산개발원 수산연구본부) ;
  • 이동림 (한국해양수산개발원 수산연구본부) ;
  • 김양하 (이화여자대학교 식품영양학과)
  • Won Jang (Department of Nutritional Science and Food Management, Ewha Womans University) ;
  • Yeji Choi (Department of Clinical Nutrition, Ewha Graduate School of Converging Clinical & Public Health) ;
  • Jung Hee Cho (Fisheries Policy Research Division, Korea Maritime Institute) ;
  • Donglim Lee (Fisheries Policy Research Division, Korea Maritime Institute) ;
  • Yangha Kim (Department of Nutritional Science and Food Management, Ewha Womans University)
  • 투고 : 2023.01.05
  • 심사 : 2023.03.02
  • 발행 : 2023.04.30

초록

본 연구는 제7기 (2016-2018년) 국민건강영양조사 자료를 활용하여 만65세 이상 노인 3,675명(남성 1,643명, 여성 2,302명)의 수산물 섭취 수준에 따른 에너지 및 미량 영양소와 식품 섭취의 차이를 분석하고 수산물 섭취와 노쇠의 연관성을 분석하고자 하였다. 노쇠 여부는 Fried 진단 기준을 활용하여 평가되었으며 노쇠 유병률은 남성은 13.4%, 여성은 29.7%로 분류되었다. 남녀 노인 모두 수산물 하위 1삼분위에서 상위 3삼분위로 갈수록 총 식품 섭취량, 곡류 및 채소과일류의 섭취가 유의적으로 많았던 반면 육류의 섭취는 유의적으로 낮아지는 음의 경향성을 보였다. 남녀 모두에서 수산물 섭취량이 많은 군일수록 에너지섭취량이 많았으며 여성 노인의 경우 수산물 섭취량이 많을수록 지방으로부터 섭취하는 에너지 비율이 높았다. 수산식품군의 섭취 수준에 따른 낮은 노쇠 위험도의 유의적인 경향성은 여성 노인에서만 나타났다. 여성 노인 수산물 섭취 하위 1삼분위군에 비해 상위 3삼분위군이 전노쇠 위험 (OR, 0.64; 95% CI, 0.42-0.96; p-trend = 0.045)과 노쇠 위험 (OR, 0.52; 95% CI, 0.32-0.83; p-trend = 0.008)이 유의하게 낮았다. 결론적으로 본 연구에서는 여성의 경우 수산물의 충분한 섭취가 낮은 노쇠 위험과 관련성이 있음을 제시하였다.

Purpose: This study investigates the association between seafood consumption and frailty according to gender in the Korean elderly. Methods: Cross-sectional data from the Seventh (2016-2018) Korea National Health and Nutrition Examination Survey was procured for this study. Data from 3,675 subjects (1,643 men and 2,032 women) aged ≥ 65 years were analyzed. Levels of seafood intake were assessed by a one-day 24-hour dietary recall, and subjects were classified into three tertiles by gender according to frailty phenotype: robust, pre-frail, and frail. Multinomial logistic regression analysis was performed to clarify the association between seafood consumption and frailty for each gender. Results: The prevalence of frailty was determined as 13.4% for men and 29.7% for women. Participants with a higher seafood intake had higher intakes of grains, fruits, and vegetables, while the intake of meat was significantly lower. In both men and women, the group with higher seafood intake showed higher energy and micronutrient intakes. The frail prevalence and frailty score were significantly low in the highest tertiles of seafood consumption compared to the lowest tertile in men and women (p < 0.001). After adjusting for confounder, the highest tertile of seafood consumption showed a decreased risk of frailty compared to the lowest tertile only in women (hazard ratio [HR], 0.50; 95% confidence interval [CI], 0.32-0.78; p-trend = 0.008 vs. HR, 0.52; 95% CI, 0.32-0.83; p-trend = 0.008; respectively). Conclusion: Results of this study suggest that seafood consumption potentially decreases the risk of frailty in the elderly.

키워드

과제정보

This research was supported by Academic-research Cooperation Program of the Korea Maritime Institute (KMI) (No. 2022-0053-1002).

참고문헌

  1. Naylor RL, Kishore A, Sumaila UR, Issifu I, Hunter BP, Belton B, et al. Blue food demand across geographic and temporal scales. Nat Commun 2021; 12(1): 5413.
  2. Willett W, Rockstrom J, Loken B, Springmann M, Lang T, Vermeulen S, et al. Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 2019; 393(10170): 447-492. https://doi.org/10.1016/S0140-6736(18)31788-4
  3. Schwingshackl L, Morze J, Hoffmann G. Mediterranean diet and health status: active ingredients and pharmacological mechanisms. Br J Pharmacol 2020; 177(6): 1241-1257. https://doi.org/10.1111/bph.14778
  4. Yamori Y, Miura A, Taira K. Implications from and for food cultures for cardiovascular diseases: Japanese food, particularly Okinawan diets. Asia Pac J Clin Nutr 2001; 10(2): 144-145. https://doi.org/10.1111/j.1440-6047.2001.00227.x
  5. Park GH, Cho JH, Lee D, Kim Y. Association between seafood intake and cardiovascular disease in South Korean adults: a community-based prospective cohort study. Nutrients 2022; 14(22): 4864.
  6. Chalon S. Omega-3 fatty acids and monoamine neurotransmission. Prostaglandins Leukot Essent Fatty Acids 2006; 75(4-5): 259-269. https://doi.org/10.1016/j.plefa.2006.07.005
  7. Alaghehband FR, Erkkila AT, Rikkonen T, Sirola J, Kroger H, Isanejad M. Association of Baltic Sea and Mediterranean diets with frailty phenotype in older women, Kuopio OSTPRE-FPS study. Eur J Nutr 2021; 60(2): 821-831. https://doi.org/10.1007/s00394-020-02290-5
  8. Leon-Munoz LM, Guallar-Castillon P, Lopez-Garcia E, Rodriguez-Artalejo F. Mediterranean diet and risk of frailty in community-dwelling older adults. J Am Med Dir Assoc 2014; 15(12): 899-903. https://doi.org/10.1016/j.jamda.2014.06.013
  9. Yamaguchi M, Yamada Y, Nanri H, Nozawa Y, Itoi A, Yoshimura E, et al. Association between the frequency of protein-rich food intakes and Kihon-Checklist frailty indices in older Japanese adults: the Kyoto-Kameoka study. Nutrients 2018; 10(1): 84.
  10. Shibasaki K, Kin SK, Yamada S, Akishita M, Ogawa S. Sex-related differences in the association between frailty and dietary consumption in Japanese older people: a cross-sectional study. BMC Geriatr 2019; 19(1): 211.
  11. Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci 2001; 56(3): M146-M156. https://doi.org/10.1093/gerona/56.3.M146
  12. Robinson TN, Wu DS, Stiegmann GV, Moss M. Frailty predicts increased hospital and six-month healthcare cost following colorectal surgery in older adults. Am J Surg 2011; 202(5): 511-514. https://doi.org/10.1016/j.amjsurg.2011.06.017
  13. Korean Statistical Information Service. Population Projections for Korea (2017-2067) [Internet]. Daejeon: Korean Statistical Information Service; 2019 [cited 2020 Sep 5]. Available from: https://kosis.kr/.
  14. Yang S, Jang W, Kim Y. Association between frailty and dietary intake in Korean elderly: based on the 2018 Korean National Health and Nutrition Examination Survey. J Nutr Health 2021; 54(6): 631-643. https://doi.org/10.4163/jnh.2021.54.6.631
  15. Jang W, Shin Y, Kim Y. Dietary pattern accompanied with a high food variety score is negatively associated with frailty in older adults. Nutrients 2021; 13(9): 3164.
  16. Kim J, Lee Y, Won CW, Kim MK, Kye S, Shim JS, et al. Dietary patterns and frailty in older Korean adults: results from the Korean frailty and aging cohort study. Nutrients 2021; 13(2): 601.
  17. National Institute of Fisheries Science. Composition table of marine products in Korea (2018). Pusan: National Institute of Fisheries Science; 2018.
  18. Rural Development Administration, National Institute of Agricultural Science. Korean food composition table (9.3th revision). Wanju: National Institute of Agricultural Science; 2021.
  19. Ministry of Health and Welfare, The Korean Nutrition Society. Dietary reference intakes for Koreans 2020. Seoul: The Korean Nutrition Society; 2020.
  20. Jang W, Ryu H. Association of low hand grip strength with protein intake in Korean female elderly: based on the seventh Korea National Health and Nutrition Examination Survey (KNHANES VII), 2016-2018. Korean J Community Nutr 2020; 25(3): 226-235. https://doi.org/10.5720/kjcn.2020.25.3.226
  21. Jonsson AC, Lindgren I, Norrving B, Lindgren A. Weight loss after stroke: a population-based study from the Lund Stroke Register. Stroke 2008; 39(3): 918-923. https://doi.org/10.1161/STROKEAHA.107.497602
  22. Chen LK, Liu LK, Woo J, Assantachai P, Auyeung TW, Bahyah KS, et al. Sarcopenia in Asia: consensus report of the Asian Working Group for Sarcopenia. J Am Med Dir Assoc 2014; 15(2): 95-101. https://doi.org/10.1016/j.jamda.2013.11.025
  23. Kim SH, Ahn J, Ock M, Shin S, Park J, Luo N, et al. The EQ-5D-5L valuation study in Korea. Qual Life Res 2016; 25(7): 1845-1852. https://doi.org/10.1007/s11136-015-1205-2
  24. Grossi G, Jeding K, Soderstrom M, Osika W, Levander M, Perski A. Self-reported sleep lengths ≥ 9 hours among Swedish patients with stress-related exhaustion: associations with depression, quality of sleep and levels of fatigue. Nord J Psychiatry 2015; 69(4): 292-299. https://doi.org/10.3109/08039488.2014.973442
  25. Savela SL, Koistinen P, Stenholm S, Tilvis RS, Strandberg AY, Pitkala KH, et al. Leisure-time physical activity in midlife is related to old age frailty. J Gerontol A Biol Sci Med Sci 2013; 68(11): 1433-1438. https://doi.org/10.1093/gerona/glt029
  26. Cesari M, Gambassi G, van Kan GA, Vellas B. The frailty phenotype and the frailty index: different instruments for different purposes. Age Ageing 2014; 43(1): 10-12. https://doi.org/10.1093/ageing/aft160
  27. Jung HW, Jang IY, Lee YS, Lee CK, Cho EI, Kang WY, et al. Prevalence of frailty and aging-related health conditions in older Koreans in rural communities: a cross-sectional analysis of the aging study of Pyeongchang rural area. J Korean Med Sci 2016; 31(3): 345-352. https://doi.org/10.3346/jkms.2016.31.3.345
  28. Choi J, Ahn A, Kim S, Won CW. Global prevalence of physical frailty by Fried's criteria in community-dwelling elderly with national population-based surveys. J Am Med Dir Assoc 2015; 16(7): 548-550. https://doi.org/10.1016/j.jamda.2015.02.004
  29. Schmid M, Kraft LG, van der Loos LM, Kraft GT, Virtue P, Nichols PD, et al. Southern Australian seaweeds: a promising resource for omega-3 fatty acids. Food Chem 2018; 265: 70-77. https://doi.org/10.1016/j.foodchem.2018.05.060
  30. Witte AV, Kerti L, Hermannstadter HM, Fiebach JB, Schreiber SJ, Schuchardt JP, et al. Long-chain omega-3 fatty acids improve brain function and structure in older adults. Cereb Cortex 2014; 24(11): 3059-3068. https://doi.org/10.1093/cercor/bht163
  31. Smith GI, Julliand S, Reeds DN, Sinacore DR, Klein S, Mittendorfer B. Fish oil-derived n-3 PUFA therapy increases muscle mass and function in healthy older adults. Am J Clin Nutr 2015; 102(1): 115-122. https://doi.org/10.3945/ajcn.114.105833
  32. Vaughan RA, Garcia-Smith R, Bisoffi M, Conn CA, Trujillo KA. Conjugated linoleic acid or omega 3 fatty acids increase mitochondrial biosynthesis and metabolism in skeletal muscle cells. Lipids Health Dis 2012; 11(1): 142.
  33. Hosomi R, Yoshida M, Fukunaga K. Seafood consumption and components for health. Glob J Health Sci 2012; 4(3): 72-86. https://doi.org/10.5539/gjhs.v4n3p72
  34. Kim D, Park J, Lee TK. Analysis of biochemical compositions and nutritive values of six species of seaweeds. J Life Sci 2013; 23(8): 1004-1009. https://doi.org/10.5352/JLS.2013.23.8.1004
  35. Golden CD, Koehn JZ, Shepon A, Passarelli S, Free CM, Viana DF, et al. Aquatic foods to nourish nations. Nature 2021; 598(7880): 315-320. https://doi.org/10.1038/s41586-021-03917-1
  36. Jang W, Cho JH, Lee D, Kim Y. Trends in seafood consumption and factors influencing the consumption of seafood among the old adults based on the Korea National Health and Nutrition Examination Survey 2009-2019. J Korean Soc Food Sci Nutr. 2022; 51(7): 651-659. https://doi.org/10.3746/jkfn.2022.51.7.651