DOI QR코드

DOI QR Code

Macakurzin C Derivatives as a Novel Pharmacophore for Pan-Peroxisome Proliferator-Activated Receptor Modulator

  • Hyejin Ko (College of Pharmacy, Natural Products Research Institute, Seoul National University) ;
  • Seungchan An (College of Pharmacy, Natural Products Research Institute, Seoul National University) ;
  • Hongjun Jang (Research Institute of Pharmaceutical Science and Technology, College of Pharmacy, Ajou University) ;
  • Sungjin Ahn (College of Pharmacy, Natural Products Research Institute, Seoul National University) ;
  • In Guk Park (College of Pharmacy, Natural Products Research Institute, Seoul National University) ;
  • Seok Young Hwang (College of Pharmacy, Natural Products Research Institute, Seoul National University) ;
  • Junpyo Gong (College of Pharmacy, Natural Products Research Institute, Seoul National University) ;
  • Soyeon Oh (College of Pharmacy, Natural Products Research Institute, Seoul National University) ;
  • Soo Yeon Kwak (Research Institute of Pharmaceutical Science and Technology, College of Pharmacy, Ajou University) ;
  • Won Jun Choi (College of Pharmacy, Dongguk University-Seoul) ;
  • Hyoungsu Kim (Research Institute of Pharmaceutical Science and Technology, College of Pharmacy, Ajou University) ;
  • Minsoo Noh (College of Pharmacy, Natural Products Research Institute, Seoul National University)
  • Received : 2022.07.19
  • Accepted : 2022.09.05
  • Published : 2023.05.01

Abstract

The natural flavonoid macakurzin C (1) exhibited adiponectin biosynthesis-inducing activity during adipogenesis in human bone marrow mesenchymal stem cells and its molecular mechanism was directly associated with a pan-peroxisome proliferator-activated receptor (PPAR) modulator affecting all three PPAR subtypes α, γ, and δ. In this study, increases in adiponectin biosynthesis-inducing activity by macakurzin C derivatives (2-7) were studied. The most potent adiponectin biosynthesis-inducing compound 6, macakurzin C 3,5-dimethylether, was elucidated as a dual PPARα/γ modulator. Compound 6 may exhibit the most potent activity because of the antagonistic relationship between PPARδ and PPARγ. Docking studies revealed that the O-methylation of macakurzin C to generate compound 6 significantly disrupted PPARδ binding. Compound 6 has therapeutic potential in hypoadiponectinemia-related metabolic diseases.

Keywords

Acknowledgement

This study was supported by the National Research Foundation of Korea (NRF) grants funded by the Korea government (MSIT) [NRF-2019R1A2C2085749, NRF-2022M3A9B6017654, and NRF-2020R1A2C2010329].

References

  1. Akram, M., Shin, I., Kim, K. A., Noh, D., Baek, S. H., Chang, S. Y., Kim, H. and Bae, O. N. (2016) A newly synthesized macakurzin C-derivative attenuates acute and chronic skin inflammation: the Nrf2/heme oxygenase signaling as a potential target. Toxicol. Appl. Pharmacol. 307, 62-71. https://doi.org/10.1016/j.taap.2016.07.013
  2. An, S., Kim, G., Kim, H. J., Ahn, S., Kim, H. Y., Ko, H., Hyun, Y. E., Nguyen, M., Jeong, J., Liu, Z., Han, J., Choi, H., Yu, J., Kim, J. W., Lee, H. W., Jacobson, K. A., Cho, W. J., Kim, Y. M., Kang, K. W., Noh, M. and Jeong, L. S. (2020a) Discovery and structure-activity relationships of novel template, truncated 1'-homologated adenosine derivatives as pure dual PPARγ/δ modulators. J. Med. Chem. 63, 16012-16027. https://doi.org/10.1021/acs.jmedchem.0c01874
  3. An, S., Yu, J., Choi, H., Ko, H., Ahn, S., Shin, J. C., Pyo, J. J., Jeong, L. S. and Noh, M. (2020b) Selenium bioisosteric replacement of adenosine derivatives promoting adiponectin secretion increases the binding affinity to peroxisome proliferator-activated receptor δ. Bioorg. Med. Chem. 28, 115226.
  4. Avgerinos, K. I., Spyrou, N., Mantzoros, C. S. and Dalamaga, M. (2019) Obesity and cancer risk: emerging biological mechanisms and perspectives. Metabolism 92, 121-135. https://doi.org/10.1016/j.metabol.2018.11.001
  5. Baek, S. H., Jang, H. and Kim, H. (2015) Synthesis and biological evaluation of acetylcholinesterase inhibitor macakurzin C and its derivatives. Synlett 26, 1131-1134. https://doi.org/10.1055/s-0034-1380193
  6. Bernardes, A., Souza, P. C., Muniz, J. R., Ricci, C. G., Ayers, S. D., Parekh, N. M., Godoy, A. S., Trivella, D. B., Reinach, P., Webb, P., Skaf, M. S. and Polikarpov, I. (2013) Molecular mechanism of peroxisome proliferator-activated receptor α activation by WY14643: a new mode of ligand recognition and receptor stabilization. J. Mol. Biol. 425, 2878-2893. https://doi.org/10.1016/j.jmb.2013.05.010
  7. Boutari, C. and Mantzoros, C. S. (2020) Adiponectin and leptin in the diagnosis and therapy of NAFLD. Metabolism 103, 154028.
  8. Bruning, J. B., Chalmers, M. J., Prasad, S., Busby, S. A., Kamenecka, T. M., He, Y., Nettles, K. W. and Griffin, P. R. (2007) Partial agonists activate PPARgamma using a helix 12 independent mechanism. Structure 15, 1258-1271. https://doi.org/10.1016/j.str.2007.07.014
  9. Capelli, D., Cerchia, C., Montanari, R., Loiodice, F., Tortorella, P., Laghezza, A., Cervoni, L., Pochetti, G. and Lavecchia, A. (2016) Structural basis for PPAR partial or full activation revealed by a novel ligand binding mode. Sci. Rep. 6, 34792.
  10. Han, Y., Liu, J., Ahn, S., An, S., Ko, H., Shin, J. C., Jin, S. H., Ki, M. W., Lee, S. H., Lee, K. H., Shin, S. S., Choi, W. J. and Noh, M. (2020) Diallyl biphenyl-type neolignans have a pharmacophore of PPARα/γ dual modulators. Biomol. Ther. (Seoul) 28, 397-404. https://doi.org/10.4062/biomolther.2019.180
  11. Harmon, G. S., Lam, M. T. and Glass, C. K. (2011) PPARs and lipid ligands in inflammation and metabolism. Chem. Rev. 111, 6321-6340. https://doi.org/10.1021/cr2001355
  12. Hoppmann, J., Perwitz, N., Meier, B., Fasshauer, M., Hadaschik, D., Lehnert, H. and Klein, J. (2010) The balance between gluco- and mineralo-corticoid action critically determines inflammatory adipocyte responses. J. Endocrinol. 204, 153-164. https://doi.org/10.1677/JOE-09-0292
  13. Hossain, M. M., Mukheem, A. and Kamarul, T. (2015) The prevention and treatment of hypoadiponectinemia-associated human diseases by up-regulation of plasma adiponectin. Life Sci. 135, 55-67. https://doi.org/10.1016/j.lfs.2015.03.010
  14. Kojetin, D. J. and Burris, T. P. (2013) Small molecule modulation of nuclear receptor conformational dynamics: implications for function and drug discovery. Mol. Pharmacol. 83, 1-8. https://doi.org/10.1124/mol.112.079285
  15. Kroker, A. J. and Bruning, J. B. (2015) Review of the structural and dynamic mechanisms of PPARγ partial agonism. PPAR Res. 2015, 816856.
  16. Lee, D., Shin, I., Ko, E., Lee, K., Seo, S. Y. and Kim, H. (2014) Total synthesis of acetylcholinesterase inhibitor macakurzin C. Synlett 25, 2794-2796. https://doi.org/10.1055/s-0034-1378904
  17. Nakamura, M. T., Yudell, B. E. and Loor, J. J. (2014) Regulation of energy metabolism by long-chain fatty acids. Prog. Lipid Res. 53, 124-144. https://doi.org/10.1016/j.plipres.2013.12.001
  18. Rajapaksha, H., Bhatia, H., Wegener, K., Petrovsky, N. and Bruning, J. B. (2017) X-ray crystal structure of rivoglitazone bound to PPARγ and PPAR subtype selectivity of TZDs. Biochim. Biophys. Acta, Gen. Subj. 1861, 1981-1991. https://doi.org/10.1016/j.bbagen.2017.05.008
  19. Shin, D. W., Kim, S. N., Lee, S. M., Lee, W., Song, M. J., Park, S. M., Lee, T. R., Baik, J. H., Kim, H. K., Hong, J. H. and Noh, M. (2009) (-)-Catechin promotes adipocyte differentiation in human bone marrow mesenchymal stem cells through PPAR gamma transactivation. Biochem. Pharmacol. 77, 125-133. https://doi.org/10.1016/j.bcp.2008.09.033
  20. Stern, J. H., Rutkowski, J. M. and Scherer, P. E. (2016) Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk. Cell Metab. 23, 770-784. https://doi.org/10.1016/j.cmet.2016.04.011
  21. Trinh Thi Thanh, V., Doan Thi Mai, H., Pham, V. C., Litaudon, M., Dumontet, V., Gueritte, F., Nguyen, V. H. and Chau, V. M. (2012) Acetylcholinesterase inhibitors from the leaves of Macaranga kurzii. J. Nat. Prod. 75, 2012-2015. https://doi.org/10.1021/np300660y
  22. Wang, L., Waltenberger, B., Pferschy-Wenzig, E. M., Blunder, M., Liu, X., Malainer, C., Blazevic, T., Schwaiger, S., Rollinger, J. M., Heiss, E. H., Schuster, D., Kopp, B., Bauer, R., Stuppner, H., Dirsch, V. M. and Atanasov, A. G. (2014) Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): a review. Biochem. Pharmacol. 92, 73-89. https://doi.org/10.1016/j.bcp.2014.07.018
  23. Wu, C. C., Baiga, T. J., Downes, M., La Clair, J. J., Atkins, A. R., Richard, S. B., Fan, W., Stockley-Noel, T. A., Bowman, M. E., Noel, J. P. and Evans, R. M. (2017) Structural basis for specific ligation of the peroxisome proliferator-activated receptor δ. Proc. Natl. Acad. Sci. U. S. A. 114, E2563-E2570. https://doi.org/10.1073/pnas.1621513114
  24. Xu, H. E., Lambert, M. H., Montana, V. G., Plunket, K. D., Moore, L. B., Collins, J. L., Oplinger, J. A., Kliewer, S. A., Gampe, R. T., McKee, D. D., Moore, J. T. and Willson, T. M. (2001) Structural determinants of ligand binding selectivity between the peroxisome proliferator-activated receptors. Proc. Natl. Acad. Sci. U. S. A. 98, 13919-13924. https://doi.org/10.1073/pnas.241410198
  25. Yu, J., Ahn, S., Kim, H. J., Lee, M., Ahn, S., Kim, J., Jin, S. H., Lee, E., Kim, G., Cheong, J. H., Jacobson, K. A., Jeong, L. S. and Noh, M. (2017) Polypharmacology of N6-(3-iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA) and related A3 adenosine receptor ligands: peroxisome proliferator activated receptor (PPAR) γ partial agonist and PPARδ antagonist activity suggests their antidiabetic potential. J. Med. Chem. 60, 7459-7475. https://doi.org/10.1021/acs.jmedchem.7b00805
  26. Zuo, X., Wu, Y., Morris, J. S., Stimmel, J. B., Leesnitzer, L. M., Fischer, S. M., Lippman, S. M. and Shureiqi, I. (2006) Oxidative metabolism of linoleic acid modulates PPAR-beta/delta suppression of PPAR-gamma activity. Oncogene 25, 1225-1241. https://doi.org/10.1038/sj.onc.1209160