References
- Ahmed, B.M., French, J.R.J., Vinden, P. 2004. Evaluation of borate formulations as wood preservatives to control subterranean termites in Australia. Holzfors- chung 58(4): 446-454. https://doi.org/10.1515/HF.2004.068
- Arinana, Hutapea, F.E., Nandika, D., Haneda, N.F. 2020. Field evaluation of subterranean termites palatability on treated pine wood in Alam Sinarsari Residence, West Java. IOP Conference Series: Materials Science and Engineering 935(1): 012012.
- ASTM International. 2002. Standard Test Method of Evaluating Wood Preservatives by Field Test with Stakes. ASTM D 1758-02. ASTM International, West Conshohocken, PA, USA.
- Beck, G. 2020. Leachability and decay resistance of wood polyesterified with sorbitol and citric acid. Forests 11(6): 650.
- Cahyono, T.D., Darmawan, W., Priadi, T., Iswanto, A.H. 2020. Flexural properties of heat-treatment Samama (Anthocephalus macrophyllus) wood impregnated by boron and methyl metacrylate. Journal of the Korean Wood Science and Technology 48(1): 76-85. https://doi.org/10.5658/WOOD.2020.48.1.76
- Cahyono, T.D., Wahyudi, I., Priadi, T., Febrianto, F., Darmawan, W., Bahtiar, E.T., Ohorella, S., Novriyanti, E. 2015. The quality of 8 and 10 years old Samama wood (Anthocephalus macrophyllus). Journal of the Indian Academy of Wood Science 12(1): 22-28. https://doi.org/10.1007/s13196-015-0140-8
- Cao, S., Cheng, S., Cai, J. 2022. Research progress and prospects of wood high-temperature heat treatment technology. BioResources 17(2): 3702-3717. https://doi.org/10.15376/biores.17.2.Cao
- Doll, K.M., Shogren, R.L., Willett, J.L., Swift, G. 2006. Solvent-free polymerization of citric acid and Dsorbitol. Journal of Polymer Science Part A: Polymer Chemistry 44(14): 4259-4267. https://doi.org/10.1002/pola.21535
- Esteves, B.M., Pereira, H.M. 2009. Wood modification by heat treatment: A review. BioResources 4(1): 370-404. https://doi.org/10.15376/biores.4.1.Esteves
- Farid, A., Zaman, M., Saeed, M., Khan, M., Shah, T.B. 2015. Evaluation of boric acid as a slow-acting toxicant against subterranean termites (Heterotermes and Odontotermes). Journal of Entomology and Zoology Studies 3(1): 213-216.
- Gecer, M., Baysal, E., Toker, H., Turkoglu, T., Vargun, E., Yuksel, M. 2015. The effect of boron compounds impregnation on physical and mechanical properties of wood polymer composites. Wood Research 60(5): 723-738.
- Halawane, J.E., Hidayah, H.N., Kinho, J. 2015. Prospek Pengembangan Jabon Merah, Anthocephalus macrophyllus (Roxb.) Havil: Solusi Kebutuhan Kayu Masa Depan. Balai Penelitian Kehutanan Manado, Manado, Indonesia.
- He, X., Xiao, Z., Feng, X., Sui, S., Wang, Q., Xie, Y. 2016. Modification of poplar wood with glucose crosslinked with citric acid and 1,3-dimethylol-4,5-dihydroxy ethyleneurea. Holzforschung 70(1): 47-53. https://doi.org/10.1515/hf-2014-0317
- Istriana, N., Priadi, T. 2021. The resistance of modified Manii wood with boric acid and chitosan/glycerol and heating against fungi and termites. IOP Conference Series: Earth and Environmental Science 891: 012010.
- Kartal, S.N., Terzi, E., Yoshimura, T. 2020. Performance of fluoride and boron compounds against drywood and subterranean termites and decay and mold fungi. Journal of Forestry Research 31(4): 1425-1434. https://doi.org/10.1007/s11676-019-00939-4
- Larnoy, E., Karaca, A., Gobakken, L.R., Hill, C.A.S. 2018. Polyesterification of wood using sorbitol and citric acid under aqueous conditions. International Wood Products Journal 9(2): 66-73. https://doi.org/10.1080/20426445.2018.1475918
- Lee, S.H., Md Tahir, P., Lum, W.C., Tan, L.P., Bawon, P., Park, B.D., Osman Al Edrus, S.S., Abdullah, U.H. 2020. A review on citric acid as green modifying agent and binder for wood. Polymers 12(8):1692.
- Miklecic, J., Jirous-Rajkovic, V. 2011. Accelerated weathering of coated and uncoated beech wood modified with citric acid. Drvna Industrija 62(4): 277-282. https://doi.org/10.5552/drind.2011.1116
- Mubarok, M., Militz, H., Dumarcay, S., Gerardin, P. 2020. Beech wood modification based on in situ esterification with sorbitol and citric acid. Wood Science and Technology 54(3): 479-502. https://doi.org/10.1007/s00226-020-01172-7
- Percin, O., Sofuoglu, S.D., Uzun, O. 2015. Effects of boron impregnation and heat treatment on some mechanical properties of oak (Quercus petraea Liebl.) wood. BioResources 10(3): 3963-3978. https://doi.org/10.15376/biores.10.3.3963-3978
- Priadi, T., Lestari, M.D., Cahyono, T.D. 2021. Posttreatment effects of castor bean oil and heating in treated jabon wood on boron leaching, dimensional stability, and decay fungi inhibition. Journal of the Korean Wood Science and Technology 49(6): 602-615. https://doi.org/10.5658/WOOD.2021.49.6.602
- Priadi, T., Orfian, G., Cahyono, T.D., Iswanto, A.H. 2020. Dimensional stability, color change, and dura- bility of boron-MMA treated red jabon (Antoche- phalus macrophyllus) wood. Journal of the Korean Wood Science and Technology 48(3): 315-325. https://doi.org/10.5658/WOOD.2020.48.3.315
- Rumbaremata, A., Cahyono, T.D., Darmawan, T., Kusumah, S.S., Akbar, F., Dwianto, W. 2019. Peningkatan kerapatan kayu Samama melalui prekompresi asam sitrat (Density improvement of Sama- ma wood by pre-compression of citric acid). Jurnal Ilmu dan Teknologi Kayu Tropis 17(2): 122-133. https://doi.org/10.51850/jitkt.v17i2.418
- Salem, M.Z.M., Mansour, M.M.A., Elansary, H.O. 2019. Evaluation of the effect of inner and outer bark extracts of sugar maple (Acer saccharum var. sa- ccharum) in combination with citric acid against the growth of three common molds. Journal of Wood Chemistry and Technology 39(2): 136-147.
- Schorr, D., Blanchet, P., Essoua Essoua, G.G. 2018. Glycerol and citric acid treatment of lodgepole pine. Journal of Wood Chemistry and Technology 38(2): 123-136. https://doi.org/10.1080/02773813.2017.1388822
- Schulz, H.R., Acosta, A.P., Barbosa, K.T., Junior, M.A.P.S., Gallio, E., Delucis, R.A., Gatto, D.A. 2021. Chemical, mechanical, thermal, and colori- metric features of the thermally treated eucalyptus grandis wood planted in Brazil. Journal of the Korean Wood Science and Technology 49(3): 226-233. https://doi.org/10.5658/WOOD.2021.49.3.226
- Sefc, B., Trajkovic, J., Sinkovic, T., Hasan, M., Istok, I. 2012. Compression strength of fir and beech wood modified by citric acid. Drvna Industrija 63(1): 45-50. https://doi.org/10.5552/drind.2012.1123
- Standar Nasional Indonesia [SNI]. 2014. Testing for Wood Resistance to Destructive Organisms. SNI 7207:2014. SNI, Jakarta Pusat, Indonesia.
- Tarasin, M., Rattanapun, W. 2019. Termite resistance of Melaleuca cajuputi wood treated with citric acid. Agriculture and Natural Resources 53(6): 662-666.
- Temiz, A., Alfredsen, G., Eikenes, M., Terziev, N. 2008. Decay resistance of wood treated with boric acid and tall oil derivates. Bioresource Technology 99(7): 2102-2106. https://doi.org/10.1016/j.biortech.2007.08.052
- Thevenon, M.F., Pizzi, A., Haluk, J.P. 1998. Albumin borate: A new non-toxic, wide-spectrum, long-term wood preservative. In: Maastricht, Netherlands, Proceedings of IRG 29th Annual Meeting of the International Research Group on Wood Preservation.
- Tuheteru, F.D., Husna, Yusria, W.O. 2019. Jabon Merah. Deepublish, Yogyakarta, Indonesia.
- Verly Lopes, D.J., Barnes, H. M., dos Santos Bobadilha, G. 2020. Influence of heat treatment and tannin impregnation on boron depletion and wood durability. Forests 11(2): 201.
- Vukusic, S.B., Katovic, D., Schramm, C., Trajkovic, J., Sefc, B. 2006. Polycarboxylic acids as non-formal- dehyde anti-swelling agents for wood. Holzforschung 60(4): 439-444. https://doi.org/10.1515/HF.2006.069