DOI QR코드

DOI QR Code

Characteristics of Magnetic Sengon Wood Impregnated with Nano Fe3O4 and Furfuryl Alcohol

  • Gilang Dwi LAKSONO (Department of Forest Products, Faculty of Forestry and Environment, IPB University) ;
  • Istie Sekartining RAHAYU (Department of Forest Products, Faculty of Forestry and Environment, IPB University) ;
  • Lina KARLINASARI (Department of Forest Products, Faculty of Forestry and Environment, IPB University) ;
  • Wayan DARMAWAN (Department of Forest Products, Faculty of Forestry and Environment, IPB University) ;
  • Esti PRIHATINI (Department of Forest Products, Faculty of Forestry and Environment, IPB University)
  • 투고 : 2022.08.23
  • 심사 : 2022.11.04
  • 발행 : 2023.01.25

초록

Sengon (Falcataria moluccana Miq.) tree offers a wood of low quality and durability owing to its low density and thin cell walls. This study aimed to improve the properties of sengon wood by making the wood magnetic, producing new functions, and characterizing magnetic sengon wood. Each wood sample was treated using one of the following impregnation solutions: Untreated, 7.5% nano magnetite-furfuryl alcohol (Fe3O4-FA), 10% nano Fe3O4-FA, and 12.5% nano Fe3O4-FA. The impregnation process began with vacuum treatment at 0.5 bar for 2 h, followed by applying a pressure of 1 bar for 2 h. The samples were then tested for dimensional stability and density and characterized using scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDX), Fourier transform infrared spectrometry (FTIR), X-ray diffraction (XRD) analysis, and vibrating sample magnetometry (VSM) analysis. The results showed that the Fe3O4-FA impregnation treatment considerable affected the dimensional stability, measured in terms of weight percent gain, anti-swelling efficiency, water uptake, and bulking effect, as well as the density of sengon wood. Changes in wood morphology were detected by the presence of Fe deposits in the cell walls and cell cavities of the wood using SEM-EDX analysis. XRD and FTIR analyses showed the appearance of magnetite peaks in the diffractogram and Fe-O functional groups. Based on the VSM analysis, treated sengon wood is classified as a superparamagnetic material with soft magnetic properties. Overall, 10% Fe3O4-FA treatment led to the highest increase in dimensional stability and density of sengon wood.

키워드

과제정보

The authors are grateful for the support of the ministry of education, culture and research and technology of Indonesia (grant no 89/E1/KPT/2021 and grant no. 077/E4.1/AK.04.PT/2021).

참고문헌

  1. Ayrilmis, N., Kaymakci, A. 2013. Fast growing biomass as reinforcing filler in thermoplastic composites: Paulownia elongata wood. Industrial Crops and Products 43: 457-464. https://doi.org/10.1016/j.indcrop.2012.07.050
  2. Bhuiyan, M.T.R., Hirai, N., Sobue, N. 2000. Changes of crystallinity in wood cellulose by heat treatment under dried and moist conditions. Journal of Wood Science 46(6): 431-436. https://doi.org/10.1007/BF00765800
  3. Bowyer, J.L., Bowyer, J.L., Shmulsky, R., Haygreen, J.G. 2007. Forest Products and Wood Science: An Introduction. 5th ed. Iowa State Press, Ames, IA, USA.
  4. British Standards Institution. 1957. Method of Testing Small Clear Specimens of Timber (BS 373: 1957). British Standards Institution, London, UK.
  5. Cahyono, T.D., Darmawan, W., Priadi, T., Iswanto, A.H. 2020. Flexural properties of heat-treatment samama (Anthocephalus macrophyllus) wood impregnated by boron and methyl metacrylate. Journal of the Korean Wood Science and Technology 48(1): 76-85. https://doi.org/10.5658/WOOD.2020.48.1.76
  6. Cave, I.D. 1997. Theory of X-ray measurement of microfibril angle in wood. Wood Science and Technology 31(3): 143-152. https://doi.org/10.1007/BF00705881
  7. Chang, H.T., Chang, S.T. 2006. Modification of wood with isopropyl glycidyl ether and its effects on decay resistance and light stability. Bioresource Technology 97(11): 1265-1271. https://doi.org/10.1016/j.biortech.2005.06.001
  8. Chicco, D., Warrens, M.J., Jurman, G. 2021. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science 7: e623.
  9. Cornell R.M., Schwertmann U. 2006. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Ues. John Wiley & Sons, New York, NY, USA.
  10. Dirna, F.C., Rahayu, I., Zaini, L.H., Darmawan, W., Prihatini, E. 2020. Improvement of fast-growing wood species characteristics by MEG and nano SiO2 impregnation. Journal of the Korean Wood Science and Technology 48(1): 41-49. https://doi.org/10.5658/WOOD.2020.48.1.41
  11. Dong, Y., Yan, Y., Zhang, S., Li, J. 2014. Wood/polymer nanocomposites prepared by impregnation with furfuryl alcohol and nano SiO2. BioResources 9(4): 6028-6040. https://doi.org/10.15376/biores.9.4.6028-6040
  12. Dong, Y., Yan, Y., Zhang, Y., Zhang, S., Li, J. 2016. Combined treatment for conversion of fast-growing poplar wood to magnetic wood with high dimensional stability. Wood Science and Technology 50(3): 503-517. https://doi.org/10.1007/s00226-015-0789-6
  13. Gan, W., Gao, L., Xiao, S., Gao, R., Zhang, W., Li, J., Zhan, X. 2017. Magnetic wood as an effective induction heating material: Magnetocaloric effect and thermal insulation. Advanced Materials Interfaces 4(22): 1700777.
  14. Gao, H.L., Wu, G.Y., Guan, H.T., Zhang, G.L. 2012. In situ preparation and magnetic properties of Fe3O4/wood composite. Materials Technology 27(1): 101-103. https://doi.org/10.1179/175355511X13240279339806
  15. Hadi, Y.S., Herliyana, E.N., Pari, G., Pari, R., Abdillah, I.B. 2022. Furfurylation effects on discoloration and physical-mechanical properties of wood from tropical plantation forests. Journal of the Korean Wood Science and Technology 50(1): 46-58. https://doi.org/10.5658/WOOD.2022.50.1.46
  16. Hadi, Y.S., Massijaya, M.Y., Zaini, L.H., Abdillah, I.B., Arsyad, W.O.M. 2018. Resistance of methyl methacrylate-impregnated wood to subterranean termite attack. Journal of the Korean Wood Science and Technology 46(6): 748-755. https://doi.org/10.5658/WOOD.2018.46.6.748
  17. Hadi, Y.S., Massijaya, M.Y., Zaini, L.H., Pari, R. 2019. Physical and mechanical properties of methyl methacrylate-impregnated wood from three fast-growing tropical tree species. Journal of the Korean Wood Science and Technology 47(3): 324-335. https://doi.org/10.5658/WOOD.2019.47.3.324
  18. Hadiyane, A., Dungani, R., Dewi, S.P., Rumidatul, A. 2018. Effect of chemical modification of jabon wood (Anthocephalus cadamba Miq.) on morphological structure and dimensional stability. Journal of Biological Sciences 18(4): 201-207. https://doi.org/10.3923/jbs.2018.201.207
  19. Hartono, R., Hidayat, W., Wahyudi, I., Febrianto, F., Dwianto, W., Jang, J.H., Kim, N.H. 2016. Effect of phenol formaldehyde impregnation on the physical and mechanical properties of soft-inner part of oil palm trunk. Journal of the Korean Wood Science and Technology 44(6): 842-851. https://doi.org/10.5658/WOOD.2016.44.6.842
  20. Hill, C.A.S. 2006. Wood Modification: Chemical, Thermal and Other Processes. John Wiley & Sons, Chichester, UK.
  21. Hui, C., Shen, C., Yang, T., Bao, L., Tian, J., Ding, H., Li, C., Gao, H.J. 2008. Large-scale Fe3O4 nanoparticles soluble in water synthesized by a facile method. The Journal of Physical Chemistry C 112(30): 11336-11339. https://doi.org/10.1021/jp801632p
  22. Karbeka, M., Koly, F.V.L., Tellu, N.M. 2020. Characterization of the magnetic properties of iron sand Puntaru Beach, Alor - NTT Regency. Lantanida Journal 8(2): 96-188.
  23. Khan, I., Saeed, K., Khan, I. 2019. Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry 12(7): 908-931. https://doi.org/10.1016/j.arabjc.2017.05.011
  24. Kumar, R., Stephen Inbaraj, B., Chen, B.H. 2010. Surface modification of superparamagnetic iron nanoparticles with calcium salt of poly (γ-glutamic acid) as coating material. Materials Research Bulletin 45(11): 1603-1607. https://doi.org/10.1016/j.materresbull.2010.07.017
  25. Kumar, S., Singh, R., Singh, T.P., Batish, A. 2021. Investigations for magnetic properties of PLA-PVC-Fe3O4-wood dust blend for self-assembly applications. Journal of Thermoplastic Composite Materials 34(7): 929-951. https://doi.org/10.1177/0892705719857778
  26. Lee, J.M., Lee, W.H. 2018. Dimensional stabilization through heat treatment of thermally compressed wood of Korean pine. Journal of the Korean Wood Science and Technology 46(5): 471-485. https://doi.org/10.5658/WOOD.2018.46.5.471
  27. Lin, C.C., Ho, J.M. 2014. Structural analysis and catalytic activity of Fe3O4 nanoparticles prepared by a facile co-precipitation method in a rotating packed bed. Ceramics International 40(7): 10275-10282. https://doi.org/10.1016/j.ceramint.2014.02.119
  28. Marta, R., Darvina, Y., Ramli., Desnita. 2020. Effect of MnFe3O4 composition on magnetic properties of MnFe3O4/PVDF nanocomposite prepared by spin coating method. Pillar of Physics 13: 42-50.
  29. Martawijaya, A., Kartasujana, I., Kadir, K., Prawira, S.A. 2005. Indonesian Wood Atlas. Part I (In Indonesian). Ministry of Forestry, Bogor, Indonesia.
  30. Masoudi, A., Hosseini, H.R.M., Shokrgozar, M.A., Ahmadi, R., Oghabian, M.A. 2012. The effect of poly (ethylene glycol) coating on colloidal stability of superparamagnetic iron oxide nanoparticles as potential MRI contrast agent. International Journal of Pharmaceutics 433(1-2): 129-141. https://doi.org/10.1016/j.ijpharm.2012.04.080
  31. Merk, V., Chanana, M., Gierlinger, N., Hirt, A.M., Burgert, I. 2014. Hybrid wood materials with magnetic anisotropy dictated by the hierarchical cell structure. ACS Applied Materials & Interfaces 6(12): 9760-9767. https://doi.org/10.1021/am5021793
  32. Nandiyanto, A.B.D., Oktiani, R., Ragadhita, R. 2019. How to read and interpret FTIR spectroscope of organic material. Indonesian Journal of Science & Technology 4(1): 97-118. https://doi.org/10.17509/ijost.v4i1.15806
  33. Oh, S.W., Park, H.J. 2015. Vacuum pressure treatment of water-soluble melamine resin impregnation for improvement of mechanical property, abrasion resistance and incombustibility on softwood. Journal of the Korean Wood Science and Technology 43(6): 792-797. https://doi.org/10.5658/WOOD.2015.43.6.792
  34. Oka, H., Terui, M., Osada, H., Sekino, N., Namizaki, Y., Oka, H., Dawson, F.P. 2012. Electromagnetic wave absorption characteristics adjustment method of recycled powder-type magnetic wood for use as a building material. IEEE Transactions on Magnetics 48(11): 3498-3500. https://doi.org/10.1109/TMAG.2012.2196026
  35. Priadi, T., Orfian, G., Cahyono, T.D., Iswanto, A.H. 2020. Dimensional stability, color change, and durability of boron-MMA treated red jabon (Antochephalus macrophyllus) wood. Journal of the Korean Wood Science and Technology 48(3): 315-325. https://doi.org/10.5658/WOOD.2020.48.3.315
  36. Priadi, T., Sholihah, M., Karlinasari, L. 2019. Water absorption and dimensional stability of heat-treated fast-growing hardwoods. Journal of the Korean Wood Science and Technology 47(5): 567-578. https://doi.org/10.5658/WOOD.2019.47.5.567
  37. Prihatini, E., Maddu, A., Rahayu, I.S., Kurniati, M., Darmawan, W. 2020. Improvement of physical properties of jabon (Anthocephalus cadamba) through the impregnation of nano-SiO2 and melamin formaldehyde furfuril alcohol copolymer. IOP Conference Series: Materials Science and Engineering 935(1): 012061.
  38. Rahayu, I., Darmawan, W., Nawawi, D.S., Prihatini, E., Ismail, R., Laksono, G.D. 2022b. Physical properties of fast-growing wood-polymer nano composite synthesized through TiO2 nanoparticle impregnation. Polymers 14(20): 4463.
  39. Rahayu, I., Prihatini, E., Ismail, R., Darmawan, W., Karlinasari, L., Laksono, G.D. 2022a. Fast-growing magnetic wood synthesis by an in-situ method. Polymers 14(11): 2137.
  40. Rahayu, I.S., Wahyuningtyas, I., Zaini, L.H., Darmawan, W., Maddu, A., Prihatini, E. 2021. Physical properties of impregnated ganitri wood by furfuryl alcohol and nano-SiO2. In: Mataram, Indonesia, Proceedings of the 13th International Symposium of Indonesian Wood Research Society, p. 012012.
  41. Rahman, M.R., Hamdan, S., Ahmed, A.S, Islam, M.S., Talib, Z.A., Abdullah, W.F.W., Che Mat, M.S. 2011. Thermogravimetric analysis and dynamic Young's modulus measurement of N,N-dimethylacetamideimpregnated wood polymer composites. Journal of Vinyl & Additive Technology 17(3): 177-183. https://doi.org/10.1002/vnl.20275
  42. Riyanto, A. 2012. Synthesis of Fe3O4 nanoparticles and their potential as active materials on surface sensing biosensors based on SPR. M.S. Thesis, Postgraduate Program, Gadjah Mada University, Indonesia.
  43. Schmiedl, D., Endisch, S., Pindel, E., Ruckert, D., Reinhardt, S., Unkelbach, G., Schweppe, R. 2012. Base catalyzed degradation of lignin for the generation of oxy-aromatic compounds: Possibilities and challenges. Erdol Erdgas Kohle 128(10): 357-363.
  44. Setiadi, E.A., Shabrina, N., Retno, H., Utami, B., Fahmi, N.F. 2013. Synthesis of cobalt ferrite (CoFe2O4) nanoparticles by coprecipitation method and characterization of their magnetic properties. Indonesian Journal of Applied Physics 3(1): 55-62. https://doi.org/10.13057/ijap.v3i01.1216
  45. Sezer, N., Ari, I., Bicer, Y., Koc, M. 2021. Superparamagnetic nanoarchitectures: Multimodal functionalities and applications. Journal of Magnetism and Magnetic Materials 538: 168300.
  46. Sumardi, I., Darwis, A., Saad, S., Rofii, M.N. 2020. Quality enhancement of falcataria-wood through impregnation. Journal of the Korean Wood Science and Technology 48(5): 722-731. https://doi.org/10.5658/WOOD.2020.48.5.722
  47. Tang, T., Fu, Y. 2020. Formation of chitosan/sodium phytate/nano-Fe3O4 magnetic coatings on wood surfaces via layer-by-layer self-assembly. Coatings 10(1): 51.
  48. Tebriani, S. 2019. Analysis of the vibrating sample magnetometer (VSM) on the results of the electrodeposition of a thin layer of magnetite using a continuous direct current. Natural Science Journal 5(1): 722-730.
  49. Theerdhala, S., Bahadur, D., Vitta, S., Perkas, N., Zhong, Z., Gedanken, A. 2010. Sonochemical stabilization of ultrafine colloidal biocompatible magnetite nanoparticles using amino acid, L-arginine, for possible bio applications. Ultrasonics Sonochemistry 17(4): 730-737. https://doi.org/10.1016/j.ultsonch.2009.12.007
  50. Trey, S., Olsson, R.T., Strom, V., Berglund, L., Johansson, M. 2014. Controlled deposition of magnetic particles within the 3-D template of wood: Making use of the natural hierarchical structure of wood. RSC Advances 4(67): 35678-35685. https://doi.org/10.1039/C4RA04715J
  51. Vennapusa, R.R., Hunegnaw, S.M., Cabrera, R.B., Fernandez-Lahore, M. 2008. Assessing adsorbent-biomass interactions during expanded bed adsorption onto ion exchangers utilizing surface energetics. Journal of Chromatography A 1181(1-2): 9-20. https://doi.org/10.1016/j.chroma.2007.11.078
  52. Wahyuningtyas, I, Rahayu, I., Maddu, A., Prihatini, E. 2022. Magnetic properties of wood treated with nano-magnetite and furfuryl alcohol impregnation. Bioresources 17(4): 6496-6510. https://doi.org/10.15376/biores.17.4.6496-6510
  53. Wang, C., Piao, C., Lucas, C. 2011. Synthesis and characterization of superhydrophobic wood surfaces. Journal of Applied Polymer Science 119(3): 1667-1672. https://doi.org/10.1002/app.32844
  54. Wicaksono, A., Rohman, L., Supriyanto, E. 2018. BaFe12O19 ferromagnetic resonance study using micromagnetic simulation. Scientific Periodic 6(1): 46-48.
  55. Wicaksono, R., Yulianto, A., Sulhadi. 2013. Manufacture and characterization of barium ferrite-based composite magnets with natural rubber binders. Unnes Physics Journal 2(2): 32-36.
  56. Widanarto, W., Fauzi, F. N., Cahyanto, W. T., Effendi, M. 2015. Improved magnetic properties of hematite through barium substitution and sintering temperature control. Physics Periodic 18(4): 125-130.
  57. Wu, S., Sun, A., Zhai, F., Wang, J., Xu, W., Zhang, Q., Volinsky, A.A. 2011. Fe3O4 magnetic nanoparticles synthesis from tailings by ultrasonic chemical coprecipitation. Materials Letters 65(12): 1882-1884. https://doi.org/10.1016/j.matlet.2011.03.065
  58. Xu, L., Xiong, Y., Dang, B., Ye, Z., Jin, C., Sun, Q., Yu, X. 2019. In-situ anchoring of Fe3O4/ZIF-67 dodecahedrons in highly compressible wood aerogel with excellent microwave absorption properties. Materials & Design 182: 108006.
  59. Xu, Z.Z., Wang, C.C., Yang, W.L., Fu, S.K. 2005. Synthesis of superparamagnetic Fe3O4/SiO2 composite particles via sol-gel process based on inverse miniemulsion. Journal of Materials Science 40(17): 4667-4669. https://doi.org/10.1007/s10853-005-3924-1
  60. Xue, F., Zhao, G. 2008. Optimum preparation technology for Chinese fir wood/Ca-montmorillonite (Ca-MMT) composite board. Forestry Studies in China 10(3): 199-204. https://doi.org/10.1007/s11632-008-0039-1
  61. Yu, B.Y., Kwak, S.Y. 2010. Assembly of magnetite nanocrystals into spherical mesoporous aggregates with a 3-D wormhole-like pore structure. Journal of Materials Chemistry 20(38): 8320-8328. https://doi.org/10.1039/c0jm01274b
  62. Zhang, M., Yao, A., Lin, J., Shi, P., Sun, G., Jin, C. 2021. Photothermally active borosilicate-based composite bone cement for near-infrared light controlled mineralisation. Materials Technology 27(10): 1243-1250. https://doi.org/10.1080/10667857.2021.1929721
  63. Zhang, Y.H., Huang, Y.X., Ma, H.X., Yu, W.J., Qi, Y. 2018. Effect of different pressing processes and density on dimensional stability and mechanical properties of bamboo fiber-based composites. Journal of the Korean Wood Science and Technology 46(4): 355-361. https://doi.org/10.5658/WOOD.2018.46.4.355