DOI QR코드

DOI QR Code

Does surgically assisted maxillary protraction with skeletal anchorage and Class III elastics affect the pharyngeal airway? A retrospective, long-term study

  • Elvan Onem Ozbilen (Department of Orthodontics, School of Dentistry, Marmara University) ;
  • Petros Papaefthymiou (Department of Orthodontics, School of Dentistry, Marmara University) ;
  • Hanife Nuray Yilmaz (Department of Orthodontics, School of Dentistry, Marmara University) ;
  • Nazan Kucukkeles (Department of Orthodontics, Bezmialem Vakif University Faculty of Dentistry)
  • Received : 2022.05.17
  • Accepted : 2022.10.04
  • Published : 2023.01.25

Abstract

Objective: Surgically assisted maxillary protraction is an alternative protocol in severe Class III cases or after the adolescent growth spurt involving increased maxillary advancement. Correction of the maxillary deficiency has been suggested to improve pharyngeal airway dimensions. Therefore, this retrospective study aimed to analyze the airway changes cephalometrically following surgically assisted maxillary protraction with skeletal anchorage and Class III elastics. Methods: The study population consisted of 15 Class III patients treated with surgically assisted maxillary protraction combined with skeletal anchorage and Class III elastics (mean age: 12.9 ± 1.2 years). Growth changes were initially assessed for a mean of 5.5 ± 1.6 months prior to treatment. Airway and skeletal changes in the control (T0), pre-protraction (T1), post-protraction (T2), and follow-up (T3) periods were monitored and compared using lateral cephalometric radiographs. Statistical significance was set at p < 0.05. Results: The skeletal or airway parameters showed no statistically significant changes during the control period. Sella to nasion angle, N perpendicular to A, Point A to Point B angle, and Frankfort plane to mandibular plane angle increased significantly during the maxillary protraction period (p < 0.05), but no significant changes were observed in airway parameters (p > 0.05). No statistically significant changes were observed in the airway parameters in the follow-up period either. However, Sella to Gonion distance increased significantly (p < 0.05) during the follow-up period. Conclusions: No significant changes in pharyngeal airway parameters were found during the control, maxillary protraction, and follow-up periods. Moreover, the significant increases in the skeletal parameters during maxillary protraction were maintained in the long-term.

Keywords

Acknowledgement

The authors thank Epameinondas-Spyridon Themelis for his estimable contribution to statistical analysis.

References

  1. Guyer EC, Ellis EE 3rd, McNamara JA Jr, Behrents RG. Components of class III malocclusion in juveniles and adolescents. Angle Orthod 1986;56:7-30.
  2. Ngan P, Moon W. Evolution of Class III treatment in orthodontics. Am J Orthod Dentofacial Orthop 2015;148:22-36. https://doi.org/10.1016/j.ajodo.2015.04.012
  3. Baccetti T, Franchi L, McNamara JA Jr. Cephalometric variables predicting the long-term success or failure of combined rapid maxillary expansion and facial mask therapy. Am J Orthod Dentofacial Orthop 2004;126:16-22. https://doi.org/10.1016/j.ajodo.2003.06.010
  4. Toffol LD, Pavoni C, Baccetti T, Franchi L, Cozza P. Orthopedic treatment outcomes in Class III malocclusion. A systematic review. Angle Orthod 2008;78:561-73. https://doi.org/10.2319/030207-108.1
  5. Nguyen T, Cevidanes L, Paniagua B, Zhu H, Koerich L, De Clerck H. Use of shape correspondence analysis to quantify skeletal changes associated with bone-anchored Class III correction. Angle Orthod 2014;84:329-36. https://doi.org/10.2319/041513-288.1
  6. Nevzatoglu S, Kucukkeles N. Long-term results of surgically-assisted maxillary protraction. Aust Orthod J 2014;30:19-31. https://doi.org/10.2478/aoj-2014-0003
  7. Yilmaz HN, Garip H, Satilmis T, Kucukkeles N. Corticotomy-assisted maxillary protraction with skeletal anchorage and Class III elastics. Angle Orthod 2015;85:48-57. https://doi.org/10.2319/121513-921.1
  8. Kucukkeles N, Nevzatoglu S, Koldas T. Rapid maxillary expansion compared to surgery for assistance in maxillary face mask protraction. Angle Orthod 2011;81:42-9. https://doi.org/10.2319/042210-220.1
  9. Conley RS. Evidence for dental and dental specialty treatment of obstructive sleep apnoea. Part 1: the adult OSA patient and part 2: the paediatric and adolescent patient. J Oral Rehabil 2011;38:136-56. https://doi.org/10.1111/j.1365-2842.2010.02136.x
  10. Hiyama S, Suda N, Ishii-Suzuki M, Tsuiki S, Ogawa M, Suzuki S, et al. Effects of maxillary protraction on craniofacial structures and upper-airway dimension. Angle Orthod 2002;72:43-7.
  11. Baccetti T, Franchi L, Mucedero M, Cozza P. Treatment and post-treatment effects of facemask therapy on the sagittal pharyngeal dimensions in Class III subjects. Eur J Orthod 2010;32:346-50. https://doi.org/10.1093/ejo/cjp092
  12. Mucedero M, Baccetti T, Franchi L, Cozza P. Effects of maxillary protraction with or without expansion on the sagittal pharyngeal dimensions in Class III subjects. Am J Orthod Dentofacial Orthop 2009;135:777-81. https://doi.org/10.1016/j.ajodo.2008.11.021
  13. Kilinc AS, Arslan SG, Kama JD, Ozer T, Dari O. Effects on the sagittal pharyngeal dimensions of protraction and rapid palatal expansion in Class III malocclusion subjects. Eur J Orthod 2008;30:61-6. https://doi.org/10.1093/ejo/cjm076
  14. Oktay H, Ulukaya E. Maxillary protraction appliance effect on the size of the upper airway passage. Angle Orthod 2008;78:209-14. https://doi.org/10.2319/122806-535.1
  15. Sayinsu K, Isik F, Arun T. Sagittal airway dimensions following maxillary protraction: a pilot study. Eur J Orthod 2006;28:184-9. https://doi.org/10.1093/ejo/cji095
  16. Kaygisiz E, Tuncer BB, Yuksel S, Tuncer C, Yildiz C. Effects of maxillary protraction and fixed appliance therapy on the pharyngeal airway. Angle Orthod 2009;79:660-7. https://doi.org/10.2319/072408-391.1
  17. Lee JW, Park KH, Kim SH, Park YG, Kim SJ. Correlation between skeletal changes by maxillary protraction and upper airway dimensions. Angle Orthod 2011;81:426-32. https://doi.org/10.2319/082610-499.1
  18. Cakirer B, Kucukkeles N, Nevzatoglu S, Koldas T. Sagittal airway changes: rapid palatal expansion versus Le Fort I osteotomy during maxillary protraction. Eur J Orthod 2012;34:381-9. https://doi.org/10.1093/ejo/cjr023
  19. Baccetti T, Franchi L, McNamara Jr JA. The cervical vertebral maturation (CVM) method for the assessment of optimal treatment timing in dentofacial orthopedics. Semin Orthod 2005;11:119-29. https://doi.org/10.1053/j.sodo.2005.04.005
  20. Mochida M, Ono T, Saito K, Tsuiki S, Ohyama K. Effects of maxillary distraction osteogenesis on the upper-airway size and nasal resistance in subjects with cleft lip and palate. Orthod Craniofac Res 2004;7:189-97. https://doi.org/10.1111/j.1601-6343.2004.00300.x
  21. Wolford LM, Karras SC, Mehra P. Considerations for orthognathic surgery during growth, part 2: maxillary deformities. Am J Orthod Dentofacial Orthop 2001;119:102-5. https://doi.org/10.1067/mod.2001.111400
  22. Kircelli BH, Pektas ZO. Midfacial protraction with skeletally anchored face mask therapy: a novel approach and preliminary results. Am J Orthod Dentofacial Orthop 2008;133:440-9. https://doi.org/10.1016/j.ajodo.2007.06.011
  23. Sar C, Arman-Ozcirpici A, Uckan S, Yazici AC. Comparative evaluation of maxillary protraction with or without skeletal anchorage. Am J Orthod Dentofacial Orthop 2011;139:636-49. https://doi.org/10.1016/j.ajodo.2009.06.039
  24. Celikoglu M, Buyukcavus MH. Changes in pharyngeal airway dimensions and hyoid bone position after maxillary protraction with different alternate rapid maxillary expansion and construction protocols: a prospective clinical study. Angle Orthod 2017;87:519-25. https://doi.org/10.2319/082316-632.1
  25. Hwang DM, Lee JY, Choi YJ, Hwang CJ. Evaluations of the tongue and hyoid bone positions and pharyngeal airway dimensions after maxillary protraction treatment. Cranio 2019;37:214-22. https://doi.org/10.1080/08869634.2017.1418644
  26. Linder-Aronson S, Leighton BC. A longitudinal study of the development of the posterior nasopharyngeal wall between 3 and 16 years of age. Eur J Orthod 1983;5:47-58. https://doi.org/10.1093/ejo/5.1.47
  27. Taylor M, Hans MG, Strohl KP, Nelson S, Broadbent BH. Soft tissue growth of the oropharynx. Angle Orthod 1996;66:393-400.
  28. Ceylan I, Oktay H. A study on the pharyngeal size in different skeletal patterns. Am J Orthod Dentofacial Orthop 1995;108:69-75. https://doi.org/10.1016/S0889-5406(95)70068-4
  29. Akcam MO, Toygar TU, Wada T. Longitudinal investigation of soft palate and nasopharyngeal airway relations in different rotation types. Angle Orthod 2002;72:521-6.
  30. Adobes Martin M, Lipani E, Alvarado Lorenzo A, Bernes Martinez L, Aiuto R, Dioguardi M, et al. The effect of maxillary protraction, with or without rapid palatal expansion, on airway dimensions: a systematic review and meta-analysis. Eur J Paediatr Dent 2020;21:262-70.
  31. Nguyen T, De Clerck H, Wilson M, Golden B. Effect of Class III bone anchor treatment on airway. Angle Orthod 2015;85:591-6. https://doi.org/10.2319/041614-282.1
  32. Pamporakis P, Nevzatoglu S, Kucukkeles N. Threedimensional alterations in pharyngeal airway and maxillary sinus volumes in Class III maxillary deficiency subjects undergoing orthopedic facemask treatment. Angle Orthod 2014;84:701-7. https://doi.org/10.2319/060513-430.1
  33. Onem Ozbilen E, Yilmaz HN, Kucukkeles N. Comparison of the effects of rapid maxillary expansion and alternate rapid maxillary expansion and constriction protocols followed by facemask therapy. Korean J Orthod 2019;49:49-58. https://doi.org/10.4041/kjod.2019.49.1.49