
Communications for Statistical Applications and Methods
2023, Vol. 30, No. 1, 109–117

https://doi.org/10.29220/CSAM.2023.30.1.109
Print ISSN 2287-7843 / Online ISSN 2383-4757

Two tests using more assumptions but lower power

Sang Kyu Leea, Hyoung-Moon Kim1,b

aDepartment of Statistics and Probability, Michigan State University, USA;
bDepartment of Applied Statistics, Konkuk University, Korea

Abstract
Intuitively, a test with more assumptions has greater power than a test with fewer assumptions. This kind of

examples are abundant in the nonparametric tests vs corresponding parametric ones. In general, the nonparamet-
ric tests are less efficient in terms of asymptotic relative efficiency (ARE) compared to corresponding parametric
tests (Daniel, 1990). However, this is not always true. To test equal means under independent normal samples,
the usual test involves using the t-distribution with the pooled estimator of the common variance. Adding the
assumption of equal sample size, we may derive another test. In this case, two tests using more assumptions were
performed for univariate (multivariate) cases. For these examples, it was found that the power function of a test
with more assumptions is less than or equal to that of a test with fewer assumptions. This finding can be used as
an expository example in master’s mathematical statistics courses.
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1. Introduction

It is well known that a test with more (or strong) assumptions has greater power than one with fewer
assumptions. This kind of examples are abundant in the nonparametric tests vs corresponding para-
metric ones. In general, the nonparametric tests are less efficient in terms of asymptotic relative
efficiency (ARE) compared to corresponding parametric tests (Daniel, 1990). Some examples are
as follows: One-sample sign test, Cox-Stuart test for trend, median test, Ansari-Bradley test, Moses
test, two related samples sign test, Wilcoxon matched-pairs signed-ranks test, Kruskal-Wallis one-
way analysis of variance by ranks, Friedman two-way analysis of variance by ranks, and Kendall’s
tau among others.

For a illustration, we first provide an example using ARE. Another example is illustrated using
power functions.

The first example is as follows. ARE is used to compare two different tests (Chapter 3 of Lehmann,
1999). ARE is defined as

e2,1 �
n1

n2
,
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where n1 and n2 are the sample sizes required by the two tests to achieve the same power against the
same alternatives at the same level α. If ARE is 1/2, then approximately n2 = 2n1; test 2 is half as
efficient as test 1 because it requires double the sample size to achieve the same power.

Let X1, . . . , Xn be a random sample from a distribution F(x − θ), pdf f (x), and median θ. To test
H0 : θ = 0 vs. H1 : θ > 0, consider the test statistic of sign test (S )

S =

n∑
i=1

I (Xi > 0) .

Adding the additional assumption that the pdf f (x) is symmetric, we have the test statistic of Wilcoxon
test (W)

W =

n∑
i=1

sgn (Xi) R |Xi| ,

where sgn(Xi) is the sign function and R|Xi| denotes the rank of |Xi|, i = 1, . . . , n, from low to high.
Further adding F is the standard normal distribution, we have the test statistic of usual t-test (t)

t =
X̄

S X/
√

n
,

where S X is the sample standard deviation of Xi, i = 1, . . . , n.AREs in the case where F is the standard
normal distribution, it is well known that:

eS,t =
2
π

and eW,t =
3
π
.

See Examples 3.4.1 and 3.4.2 of Lehmann (1999) for more information.
A bivariate extension is possible. Let X1, . . . , Xn and Y1, . . . ,Ym be independent random samples

from distributions F(x) = P(X ≤ x) and G(y) = P(Y ≤ y) = F(y − θ), respectively. To test H0 : θ = 0
vs. H1 : θ > 0, we may use the t-test given in (2.2) and the Wilcoxon test. Similar to the one-sample
case, the ARE of the Wilcoxon test with respect to the t-test is 3/π when F is normal. See Example
3.4.3 of Lehmann (1999) for more information.

Based on one-sample and two-sample examples, we find that the test with more (or strong) as-
sumptions (t-test) has greater power than the tests with fewer assumptions (the sign test and the
Wilcoxon test for the one-sample test case; the Wilcoxon test for the two-sample case) in an asymp-
totic sense.

The second example is as follows. Let X1, . . . , Xn and Y1, . . . ,Ym be independent random samples
taken from two populations with (µi, σ

2), where σ2 < ∞, i = 1, 2. It is well known (Chapter 3 of
Lehmann, 1999) that

X̄ − Ȳ − (µ1 − µ2)
S p
√

1/n + 1/m
d
−→ N (0, 1) , (1.1)

where S 2
p = ((n − 1)S 2

X + (m − 1)S 2
Y )/n + m − 2 is the pooled estimator of common variance, S 2

X =

1/(n − 1)
∑n

i=1(Xi − X̄)2, and S 2
Y = 1/(n − 1)

∑n
i=1(Yi − Ȳ)2. Based on (1.1), the power function for

testing H0 : µ1 ≤ µ2 versus H1 : µ1 > µ2 can be derived as follows:

βφ0

(
δ

σ

)
� 1 − Φ

(
zα −

δ

σ
√

1/n + 1/m

)
,
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where δ = µ1 − µ2.
Adding the assumption of normality, that is, let X1, . . . , Xn and Y1, . . . ,Ym be independent random

samples obtained from N(µi, σ
2), where σ2 < ∞, i = 1, 2. The power function is derived and given

in (2.4). We easily find that βφ0 (δ/σ) ≥ βφ1 (δ/σ) if δ/σ > 0 and that the inequality is reversed if
δ/σ < 0. The two power functions are identical to α if δ = 0.

It is also intuitive that a test with more assumptions has greater power than one with fewer assump-
tions. However, this study found that a test with more assumptions has less or equal power. To test
equal means under independent normal samples, the usual test involves using the t-distribution with
the pooled estimator of the common variance. Under the assumption of equal sample size, the distri-
bution of the differences is an independent normal distribution. We derive a test and the corresponding
confidence interval in this case. It is noteworthy that the power function with equal sample size and
distribution of the differences following an independent normal distribution is less than or equal to
that of the usual t-test using the pooled estimator of the common variance. In the multivariate case,
there is a similar situation. This finding can be used as a notable example in master’s mathematical
statistics courses.

2. Univariate test

Let independent random samples be obtained from N(µ1, σ
2) and N(µ2, σ

2). We denote these as
X1, . . . , Xn and Y1, . . . ,Ym. It is well known (Chapter 8 of Hogg et al., 2019) that

X̄ − Ȳ − (µ1 − µ2)
S p
√

1/n + 1/m
∼ t (n + m − 2) , (2.1)

where S 2
p and the related statistics are defined in (1.1). Based on (2.1), we obtained a (1 − α)100%

confidence interval for µ1 − µ2 as X̄ − Ȳ ± tα/2(n + m − 2)S p
√

1/n + 1/m. Furthermore, we reject
H0 : µ1 − µ2 ≤ δ0 and accept the one-sided alternative H1 : µ1 − µ2 > δ0 if

t0 =
X̄ − Ȳ − δ0

S p
√

1/n + 1/m
> tα (n + m − 2) . (2.2)

WLOG, we assume that δ0 = 0.
Here, we derive a test and the corresponding confidence interval based on the differences, if we

further assume that n = m. Let Di = Xi − Yi, i = 1, . . . , n, Di ∼ N(µ1 − µ2, 2σ2) independently. Hence,

(1) D̄ = X̄ − Ȳ ∼ N(µ1 − µ2, 2σ2/n),

(2) ((n − 1)S 2
D)/2σ2 ∼ χ2(n + 1), where S 2

D = (
∑n

i=1(Di − D̄)2)/n − 1,

(3) D̄ and S 2
D are independent.

Then, by using the definition of the t-distribution,

t =
D̄ − (µ1 − µ2)

S D/
√

n
∼ t (n − 1) .

Therefore, we obtained a (1 − α)100% confidence interval for µ1 − µ2 as D̄ ± tα/2(n − 1)S D/
√

n.
Similarly, we reject H0 : µ1 − µ2 ≤ δ0 and accept the one-sided alternative H1 : µ1 − µ2 > δ0 if

t0 =
D̄ − δ0

S D/
√

n
> tα (n − 1) . (2.3)
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(b) n = 15
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Figure 1: Power functions (2.4) denoted as UE and (2.5) denoted as E with n = m.

As before, WLOG, we can assume that δ0 = 0. The developed test and corresponding confidence
interval are similar to the paired t-test. However, in the paired t-test, Xi and Yi are not independent.
Furthermore, we might think that the statistic D̄ is valid if one of the variables is re-numbered. How-
ever, this is not true because D̄ = X̄ − Ȳ and we use only the sample means of Xi and Yi, i = 1, . . . , n.

In this situation, we do not know which test is better in terms of power function. The power
functions for (2.2) and (2.3) are:

βφ1

(
δ

σ

)
= 1 − Tn+m−2

(
tα (n + m − 2) ,

√
nm

n + m
δ

σ

)
and (2.4)

βφ2

(
δ

σ

)
= 1 − Tn−1

(
tα (n − 1) ,

√
n
2
δ

σ

)
respectively, (2.5)

where δ = µ1 − µ2, Tν(·, ncp) denotes the cumulative distribution function (CDF) of the noncentral t-
distribution with degrees of freedom ν, and the noncentrality parameter ncp. The derivation of (2.4) is
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given in Appendix for completeness. We derive (2.5). Remark that
√

nD̄/
√

2σ2 ∼ N
(√

n/2 δ/σ, 1
)
.

By the definition of the noncentral t-distribution,

√
nD̄/
√

2σ2√((
(n − 1)S 2

D

)
/2σ2

)
/ (n − 1)

=

√
nD̄

S D
∼ tn−1

(
ncp =

√
n
2
δ

σ

)
.

We note the following facts:

(i) tα(ν1) < tα(ν2) if ν1 > ν2 and α < 0.5.

(ii) For ν1 > ν2, Tν1 (tα(ν1), ncp) < Tν2 (tα(ν2), ncp) if ncp > 0, and the inequality is reversed if
ncp < 0 since the right tail of the noncentral t-distribution will be heavier than the left when
ncp > 0.

(iii) βφ1 (δ/σ) ≥ βφ2 (δ/σ) if ncp > 0, and the inequality is reversed if ncp < 0. The two power
functions are the same as α when ncp = 0.

Three examples are shown in Figure 1 depending on the sample size. From Figure 1, we see that
fact (iii) holds. Thus, we find that the power function is smaller or equal, even though we use more
assumptions. Furthermore, note that both power functions strictly increase δ/σ. However, the differ-
ences between the values of the two power functions became negligible as the sample size increased.
We obtained similar power functions for the left-tail test in Figure 3 given in Appendix, which are the
mirror images in Figure 1. The power function of the two-tailed test is bowl-shaped, similar to the
case of the known σ.

3. Multivariate test

In this section, we extend the results of the previous section to include a multivariate case. If
X1,X2, . . . ,Xn is a random sample of size n from Np(µ1,Σ) and Y1,Y2, . . . ,Ym is an independent
random sample of size m from Np(µ2,Σ), then

T 2 =
[
X̄ − Ȳ −

(
µ1 − µ2

)]> [(
1
n

+
1
m

)
Sp

]−1 [
X̄ − Ȳ −

(
µ1 − µ2

)]
(3.1)

is Hotelling’s T 2-distribution (Chapter 5 of Johnson and Wichern, 2007), and is distributed as

(n + m − 2) p
n + m − p − 1

Fp,n+m−p−1,

where Sp = ((n − 1)SX + (m − 1)SY)/n + m − 2, SX = 1/(n − 1)
∑n

i=1(Xi − X̄)(Xi − X̄)> and SY =

1/(m − 1)
∑m

i=1(Yi − Ȳ)(Yi − Ȳ)>. This can be proven by the sampling distribution of the multivariate
normal distribution, additivity of the Wishart distribution, and Theorem 1 in Appendix. Further details
are provided in Appendix.

Hence, we reject H0 : µ1 − µ2 = 0 if

T 2 >
(n + m − 2) p
n + m − p − 1

Fp,n+m−p−1 (α) ,
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where T 2 is given in (3.1) under the null hypothesis and Fν1,ν2 (α) is the upper α quantile of the F-
distribution with dfs ν1 and ν2. Consequently, the confidence region for µ1 − µ2 is obtained as

T 2 ≤
(n + m − 2) p
n + m − p − 1

Fp,n+m−p−1 (α) ,

where T 2 is expressed by (3.1). The power function for the two-tailed test is given by:

βφ3

(
δ>Σ−1δ

)
= 1 − Fp,n+m−p−1

(
Fp,n+m−p−1 (α) , τ2

)
, (3.2)

where Fν1,ν2 (·, τ2) is the CDF of the noncentral F-distribution with degrees of freedom, ν1 and ν2,
and the noncentrality parameter, τ2, τ2 = ((1/n) + (1/m))−1 δ>Σ−1δ. Here, δ = µ1 − µ2. This can be
obtained using an approach similar to that used to derive the distribution in (3.1).

When n = m, let Di = Xi−Yi, i = 1, . . . , n then, Di ∼ Np(µ1−µ2, 2Σ). Let SD = 1/(n − 1)
∑n

i=1(Di−

D̄)(Di − D̄)>. We note that

(1) n1/2D̄ = n1/2(X̄ − Ȳ) ∼ Np(n1/2(µ1 − µ2), 2Σ),

(2) (n − 1)SD ∼ Wp(2Σ, n − 1),

(3) D̄ and SD are independent.

Hence, by Theorem 1 in Appendix of Hotelling’s T 2-distribution, we reject H0 : µ1 − µ2 = 0 if

T 2
D =

(
D̄ − δ

)> [
1
n

SD

]−1 (
D̄ − δ

)
>

(n − 1) p
n − p

Fp,n−p (α) (3.3)

under H0. Consequently, the confidence region for δ is given by:

T 2
D ≤

(n − 1) p
n − p

Fp,n−p (α) ,

where T 2
D is given by (3.3). The developed test and corresponding confidence region are similar to

those of paired Hotelling’s T 2test. However, note that in paired Hotelling’s T 2-test, Xi and Yi are not
independent. Therefore, the power function is given by:

βφ4

(
δ>Σ−1δ

)
= 1 − Fp,n−p

(
Fp,n−p(α), τ2

∗

)
, (3.4)

where τ2
∗ = (n/2) δ>Σ−1δ. When n = m, τ2

∗ = τ2; that is, we have the same noncentrality parameter.
We note the following facts:

(i) Fα(ν, ν1) < Fα(ν, ν2) if ν1 > ν2.

(ii) For ν1 > ν2, Fν,ν1 (Fα(ν, ν1), ncp) < Fν,ν2 (Fα(ν, ν2), ncp) if ncp > 0.

(iii) βφ3 (δ>Σ−1δ) ≥ βφ4 (δ>Σ−1δ) if ncp > 0. The two power functions are identical to α when ncp =

0.

Similar to the univariate case, we present examples with various values of n and p in Figure 2.
We find that both power functions increase strictly in δ>Σ−1δ. Furthermore, when we increased n and
decreased p, the differences between the values of the two power functions were negligible. Note that,
similar to the univariate case, we have lower or equal power, even though more assumptions are used.
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(a) n = 10, p = 3
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(b) n = 20, p = 3
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(c) n = 50, p = 3
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(d) n = 10, p = 5
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(e) n = 20, p = 5
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(f) n = 50, p = 5
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(g) n = 10, p = 8
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(h) n = 20, p = 8
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(i) n = 50, p = 8

Figure 2: Power functions (3.2) denoted as UE and (3.4) denoted as E with n = m.

4. Discussion and conclusions

In this study, two tests using additional assumptions for equal means were conducted. Power functions
were obtained from a random sample of independent normal distributions. The power of using more
assumptions is smaller than or equal to that of fewer assumptions, which contradicts intuition; a
test with more assumptions has greater power than that with fewer assumptions. We have a similar
situation for the multivariate normal distribution. This note can be used as an illustrative example in
master’s mathematical statistics courses.
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(a) n = 5 (b) n = 15

(c) n = 25

Figure 3: Power functions for the left-tail test denoted as UE with n , m and denoted as E with n = m.
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Appendix

First, we derive the power function (2.4). Note that

(1) (X̄ − Ȳ)/σ
√

1/n + 1/m ∼ N((µ1 − µ2)/σ
√

1/n + 1/m, 1),

(2) ((n + m − 2)S 2
p)/2σ2 ∼ χ2(n + m − 2), where S 2

p is the pooled estimator of common variance,

(3) X̄ − Ȳ and S 2
p are independent.
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By the definition of noncentral t-distribution,

X̄ − Ȳ
S p
√

1/n + 1/m
∼ tn+m−2

(
ncp =

1
√

1/n + 1/m
δ

σ

)
.

Second, we obtain similar power functions for the left-tail test, which are the mirror images in
Figure 1.

Some well-known facts are also summarized in the Appendix. First, the sampling distribution of
the multivariate normal distribution was provided. Let X1,X2, . . . ,Xn be random samples of size n
from Np(µ,Σ). Then,

(1) X̄ ∼ Np(µ,Σ/n).

(2) (n − 1)S ∼ Wp(Σ, n − 1), where S = 1/(n − 1)
∑n

j=1(X j − X̄)(X j − X̄)>.

(3) X̄ and S are independent.

For the properties of the Wishart distribution, we have the following additivity. That is, If A1 ∼

Wp(Σ,m1) is independent of A2, which follows Wp(Σ,m2), A1 + A2 ∼ Wp(Σ,m1 + m2). Finally, the
theorem for Hotelling’s T 2-distribution is given as follows:

Theorem 1. If X and M are independently distributed as Np (µ,Σ) and Wp (Σ, n), respectively, then:

α∗ = nX>M−1X ∼
np

n − p + 1
Fp,n−p+1

(
µ>Σ−1µ

)
, where Fp,q (λ) denotes a noncentral F-distribution

with p and q degrees of freedom and a noncentrality parameter λ.
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