DOI QR코드

DOI QR Code

Neuroprotective Compounds Isolated from Lysimachia christinae

  • Gahee Ryu (Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University) ;
  • Choong Je Ma (Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University)
  • Received : 2023.01.04
  • Accepted : 2023.02.06
  • Published : 2023.03.31

Abstract

We previously reported that dried Lysimachia christinae whole plant extract exerted significant neuroprotective activity. In this study, we tried to isolate neuroprotective compounds of L. christinae. We evaluated the neuroprotective activity of the four fractions (hexane, chloroform, ethyl acetate, and n-butanol fractions) of methanol extract. Among them, ethyl acetate and n-butanol fractions showed most potent neuroprotective activity against glutamate excitotoxicity. Nine compounds were isolated from ethyl acetate and n-butanol fractions of L. christinae extract and identified as cynaroside (1), (3,4,5,6-tetrahydroxytetrahydro-2H-pyran-2-yl)methyl-3-hydroxy-2-octyldopentaconta-23,33-dienoate (2), androst-16-ene-3,6-diol (3), 2-hydroxy-24-propoxytetracos-4-enoic acid (4), 2-hydroxy-24-methoxytetracos-4-enoic acid (5), 12-(stearoyloxy)octadec-9-enoic acid (6), β-sitosterol (7), (E)-4-(3,4-dimethoxyphenyl)but-3-en-1-yl palmitate (8) and (1S,2S,3R,4R)-4-(((2S,3R,4R,5R,6S)-2-(((2R,3R,4S,5R,6R)-2-(3,4-dimethoxyphenethoxy)-3,5-dihydroxy-6-(hydroxymethyl) tetrahydro-2H-pyran-4-yl)oxy)-4,5-dihydroxy-6-methyltetrahydro-2H-pyran-3-yl)oxy)cyclohexane-1,2,3-triol (9) by spectroscopic data such as UV, IR, NMR, Mass spectroscopy. Their neuroprotective activity was evaluated by MTT assay. Cynaroside (1) and androst-16-ene-3,6-diol (3) had significant neuroprotective activity against glutamate-injured HT22 cells. The neuroprotective efficacy of cynaroside (1) and androst-16-ene-3,6-diol (3) was related to their anti-oxidative activity.

Keywords

References

  1. Dringen, R. Prog. Neurobiol. 2000, 62, 649-671.  https://doi.org/10.1016/S0301-0082(99)00060-X
  2. Pfeiffer, A.; Jaeckel, M.; Lewerenz, J.; Noack, R.; Pouya, A.; Schacht, T.; Hoffmann, C.; Winter, J.; Schweiger, S.; Schafer, M. K. E.; Methner, A. Br. J. Pharmacol. 2014, 171, 2147-2158.  https://doi.org/10.1111/bph.12549
  3. Bal-Price, A.; Brown, G. C. J. Neurosci. 2001, 21, 6480-6491.  https://doi.org/10.1523/JNEUROSCI.21-17-06480.2001
  4. McCully, K. S. Ann. Clin. Lab. Sci. 2009, 39, 219-232.  https://doi.org/10.1016/j.religion.2009.02.007
  5. Halliwell, B. J. Neurochem. 1992, 59, 1609-1623.  https://doi.org/10.1111/j.1471-4159.1992.tb10990.x
  6. Ames, B. N.; Shigenaga, M. K.; Hagen, T. M. Proc. Natl. Acad. Sci. USA 1993, 90, 7915-7922.  https://doi.org/10.1073/pnas.90.17.7915
  7. Choi, D. W. Neuron 1988, 1, 623-634.  https://doi.org/10.1016/0896-6273(88)90162-6
  8. Murphy, T. H.; Miyamoto, M.; Sastre, A.; Schnaar, R. L.; Coyle, J. T. Neuron 1989, 2, 1547-1558.  https://doi.org/10.1016/0896-6273(89)90043-3
  9. Ishige, K.; Schubert, D.; Sagara, Y. Free Radic. Biol. Med. 2001, 30, 433-446.  https://doi.org/10.1016/S0891-5849(00)00498-6
  10. Andersen, J. K. Nat. Med. 2004, 10, S18-S25.  https://doi.org/10.1038/nrn1434
  11. Houghton, P. J.; Hylands, P. J.; Mensah, A. Y.; Hensel, A.; Deters, A. M. J. Ethnopharmacol. 2005, 100, 100-107.  https://doi.org/10.1016/j.jep.2005.07.001
  12. Verpoorte, R.; Choi, Y. H.; Kim, H. K. J. Ethnopharmacol. 2005, 100, 53-56.  https://doi.org/10.1016/j.jep.2005.05.033
  13. Wang, Y. J.; Sun, Q. S. Chin. J. Med. Chem. 2005, 6, 357-359. 
  14. Yeh, T. H.; Krauland, L.; Singh, V.; Zou, B.; Devaraj, P.; Stolz, D. B.; Franks, J.; Monga, S. P. S.; Sasatomi, E.; Behari, J. Hepatology 2010, 52, 1410-1419. 
  15. Wang, J. M.; Liu, J.; Cui, Y.; Zhang, H. W.; Feng, Z. Y. Chin. Pharm. J. 2013, 48, 30-34. 
  16. Yang, X.; Wang, B. C.; Zhang, X.; Liu, W. Q.; Qian, J. Z.; Li, W.; Deng, J.; Singh, G. K.; Su, H. J. Ethnopharmacol. 2011, 137, 57-63.  https://doi.org/10.1016/j.jep.2011.04.029
  17. Kim, M. S.; Kim, K. O.; Kim, K. S.; Park, S. Y.; Yang, S. J.; Wei, T. S.; Choi, C. W. Herb. Form. Sci. 2015, 23, 91-99. 
  18. Huang, H. L.; Xu, B.; Duan, C. S. China Oils Fats 2006, 12, 012. 
  19. Huang, H. L.; Xu, B.; Duan, C. S. Food Sci. 2006, 10, 042. 
  20. Gu, L. Z.; Zhang, B. S.; Nan, J. H. Zhong Yao Tong Bao 1988, 13, 40-42. 
  21. Ryu, G.; Ma, C. J. Evid. Based Complement. Alternat Med. 2020, 2020, 5352034. 
  22. Tan, S.; Wood, M.; Mather, P. J. Neurochem. 1998, 71, 95-105.  https://doi.org/10.1046/j.1471-4159.1998.71010095.x
  23. Jeong, G. S.; Byun, E.; Li, B.; Lee, D. S.; Kim, Y. C.; An, R. B. Arch. Pharm. Res. 2010, 33, 1269-1275.  https://doi.org/10.1007/s12272-010-0818-9
  24. Chiruvella, K.; Mohammed A.; Dampuri, G.; Ghanta, R. G.; Raghavan, S. C. Int. J. Biomed. Sci. 2007, 3, 269-278.  https://doi.org/10.59566/IJBS.2007.3269
  25. Sembiring, S.; Bangun, N.; Kaban, J.; Bangun, J. J. Phys. Conf. Series 2018, 1116, 042031. 
  26. Chaturvedula, V. S. P.; Prakash, I. Int. Curr. Pharm. J. 2012, 1, 239-242.  https://doi.org/10.3329/icpj.v1i9.11613
  27. Subbaraju, G. V.; Urbanczyk-Lipkowska, Z.; Newaz, S. N.; Manhas, M. S.; Bose, A. K. Tetrahedron 1992, 46, 10087-10092.  https://doi.org/10.1016/S0040-4020(01)89038-4
  28. Tietze, F. Anal. Biochem. 1969, 27, 502-522. 
  29. Flohe, L.; Gunzler, W. A. Met. Enzymol. 1984, 105, 114-120.  https://doi.org/10.1016/S0076-6879(84)05015-1
  30. Carlberg, I.; Mannervik, B. J. Biol. Chem. 1975, 250, 5475-5480. https://doi.org/10.1016/S0021-9258(19)41206-4