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Abstract
The growing trend of cyber risk has put forward the importance of cyber risk management. Cyber risk is

defined as an accidental or intentional risk related to information and technology assets. Although cyber risk is a
subset of operational risk, it is reported to be handled differently from operational risk due to its different features
of the loss distribution. In this study, we aim to detect the characteristics of cyber loss and find a suitable model by
measuring value at risk (VaR). We use the loss distribution approach (LDA) and the time series model to describe
cyber losses of financial and non-financial business sectors, provided in SASRO OpRisk Global Data. Peaks over
threshold (POT) method is also incorporated to improve the risk measurement. For the financial sector, the LDA
and GARCH model with POT perform better than those without POT, respectively. The same result is obtained
for the non-financial sector, although the differences are not significant. We also build a two-dimensional model
reflecting the dependence structure between financial and non-financial sectors through a bivariate copula and
check the model adequacy through VaR.

Keywords: cyber risk, value-at-risk, loss distribution approach, GARCH, extreme value theory,
copula

1. Introduction

Cyber risk, a loss or damage of a firm’s assets related to information and technology, is gradually
emerging as a significant problem. Industries attain confidential customer information, whether in
the financial sphere or not, so its loss critically damages both companies and consumers. The recent
Basel committee’s newsletter (Basel Committee on Banking Supervision, 2021) indicated that more
cyber risk management tools are required for worldwide companies to be resilient from cyber threats.
Cyber risk is generally considered as a part of operational risk, which is defined as loss arising from
unauthorized, deliberate, or accidental activities (Chernobai et al., 2008). According to Cebula and
Young (2010), cyber risk includes losses related to information technology (IT) assets resulting from
human activities, disasters, and other internal and external events. This extent illustrates that opera-
tional risk encompasses cyber risk. Thus, studies such as Biener et al. (2015) and Eling and Wirfs
(2015) utilized the operational risk dataset and employed the methods generally used for analyzing
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operational risk to analyze cyber risk. However, as Eling and Wirfs (2015) indicated, cyber losses
show different characteristics from operational losses, as also shown in Section 3 in this paper.

Many existing studies on cyber risk used the privacy rights clearinghouse (PRC) dataset, which
started to report data-breach cases publicly since 2005. PRC data only contains information about
data-breaches and does not include specific loss amounts in dolloars. Hence, it is not possible to
model the severity of data-breaches with PRC data. To solve this problem, Edwards et al. (2015)
transformed the number of records breached to loss amount by the equation offered by Jacobs (2014)
and analyzed data-breach cases through the loss distribution approach (LDA). Even though the actual
loss is unknown, Edwards et al. (2015) said that a lognormal distribution adequately explained the
transformed loss amounts, and a negative binomial distribution explained the number of data-breach
cases. Later, due to the limitation to get a comprehensive analysis of cyber risk with PRC data,
Eling and Wirfs (2019) practiced the LDA with a larger operational risk database–SASRO OpRisk
Global Data. According to SAS product description (SAS, Retrieved June 20, 2021), SASRO OpRisk
Global Data is the world’s largest and most accurate operational risk dataset. The database contains
no missing values of loss amounts, provides a detailed description of the loss since it is regularly
updated, and includes every type of cyber loss, including data-breaches. In this paper, we also utilize
SASRO OpRisk Global Data with more recent data than Eling and Wirfs (2019) to offer a broader sense
of cyber losses reflecting the current trend.

The Basel Committee on Banking Supervision (2006) recommended that banks and financial in-
stitutions review potential operational losses through an internal model, which is fitted only with the
firm’s own data. However, due to the lack of extreme cases in the internal database, the external data,
which includes the losses from other firms, could be used. If we form a dataset by extracting cyber
loss cases from SASRO OpRisk Global Data, we could consider the dataset as the external data. In this
context, what we aim in this paper is to provide a suitable analysis of cyber losses for firms that would
utilize external data.

Our study focuses on modeling the monthly cyber loss of financial and non-financial business
sectors. Cyber losses of firms in the financial category tend to be larger than those in the non-financial
category. This feature is mentioned in Eling and Wirfs (2015) and can also be seen in Section 3. We
first use the loss distribution approach (LDA) described in Aue et al. (2007) and Eling and Wirfs
(2015) to model monthly cyber losses, extracted from SASRO OpRisk Global Data. In addition to
LDA which regards each loss as independent, we also consider generalized autoregressive conditional
heteroskedasticity (GARCH) model for reflecting the time-dependence of monthly cyber losses. We
follow the two-step method suggested in McNeil and Frey (2000), as described in Section 2. We fit
four models to financial and non-financial business sectors–LDA without POT, LDA with POT (LDA-
POT), GARCH without POT, and GARCH with POT (GARCH-POT). Then, we measure cyber risk
through value at risk (VaR) from each model. VaR is one of the most common measures for the
operational risk and through VaR, we can suggest the minimum capital amount that each firm should
hold to forestall future losses. By comparing the violation rates of VaR from models with or without
POT, we can see the effectiveness of POT in measuring cyber risk. And we determine a suitable model
for modeling cyber losses in financial and non-financial sectors using the violation rates of VaR. Note
that we use the skewed-t distribution as the innovation distribution when practicing GARCH because
it would describe tail heaviness more accurately than the ordinary t-distribution.

Besides, we model the joint distribution of cyber losses from financial and non-financial sectors
using copulas upon LDA. When we want to figure out the level of cyber risk in a portfolio consisting of
firms from both of financial and non-financial sectors, joint distributions incorporating the correlation
between sectors would be advantageous. We fit a bivariate copula model to monthly cyber losses
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based on LDA approach, using t-copula and Gaussian copula. These copulas are widely used ones in
financial contexts, as mentioned in, for instance, Di Clemente et al. (2004).

The remainder of the paper is organized as follows. Section 2 introduces methods and models we
use. Section 3 describes data used and procedures of model selections. VaR and backtesting results
are presented in Section 4. Then, we conclude in Section 5.

2. Methods and models

2.1. Value at risk

Value at risk is the maximum amount of loss that can occur in a specified time period with a given
confidence level. It is one of the common methods to quantify financial risks, providing a sense of the
worst scenario. In the operational risk context, the Basel committee suggests 99.9% and the period of
one year as a suitable confidence level and time horizon. For a given confidence level of α, VaR for a
specified time horizon is defined as

VaRα = inf {L : P (Loss > L) ≤ 1 − α} . (2.1)

Detailed steps of calculating VaR will be presented in Section 4.

2.2. Peaks over threshold (POT)

POT is a widely used technique in financial modeling because it nicely captures the heavy-tailed
characteristic. It is based on Balkema and de Haan (1974) and proposed by Pickands (1975), sug-
gesting that the upper tail of a distribution be modeled through generalized Pareto distribution (GPD).
Note that when we apply POT to risk analysis, we denote losses that exceed a sufficiently high thresh-
old to “tail” and other losses to “body” of the distribution.

Suppose that X1, X2, . . . , Xn are independent and identically distributed random variables with the
cumulative distribution function (CDF) F. The CDF of the excess loss X − u | X > u that exceeds the
threshold u can be written as

Fu (y) = P (X − u ≤ y | X > u)

=
F (y + u) − F (u)

1 − F (u)
.

From the CDF of the excess loss, we can obtain the CDF of X with x = y + u as

F (x) = Fu (y) [1 − F (u)] + F (u) . (2.2)

Based on the theorem Balkema and de Haan (1974) and Pickands (1975) suggested, Embrechts
et al. (2013) explained that GPD is an appropriate approximation of Fu for large u since we can find
some positive function β for a large value u. The following Equation (2.3) shows this relationship.

lim
u→xF

sup
0<x<xF−u

∣∣∣Fu (x) −Gξ,β(u) (x)
∣∣∣ = 0. (2.3)

The CDF of GPD is defined as

Gξ,β (y) =


1 −

(
1 +

ξy
β

)− 1
ξ

if ξ , 0,

1 − exp
(
−

y
β

)
if ξ = 0,

(2.4)



78 Sanghee Kim, Seongjoo Song

β > 0, y > 0 when ξ ≥ 0, and 0 ≥ y ≤ −β/ξ when ξ < 0 where ξ is the shape parameter and β is the
scale parameter of GPD. We say that the distribution has a heavy tail when ξ > 0. For more details on
the definition and calculation of POT, refer to Embrechts et al. (2013), Beirlant et al. (2004) and Gilli
(2006).

Practically, risk quantification depends on the choice of the threshold with POT. According to
Rydman (2018), a commonly selected threshold is the 90th percentile when the whole data is large
enough. The rule of thumbs for the number of exceedances k are k =

√
N or k = N2/3/log(log(N))

where N is the total number of observations. According to McNeil and Frey (2000), GPD estimators
would have low variances when a sufficiently large number of exceedances exist over the threshold k.
Through the simulation study of choosing a threshold value, McNeil and Frey (2000) concluded that
setting k as 100 would result in accurate tail estimation in the present application.

We can also use a graphical tool for choosing the threshold. The mean excess plot is a commonly
used for this purpose, as in Rydman (2018). The mean excess function of a random variable X ∼
GPDξ,β with threshold u is the conditional expectation of the excess loss as

M (u) = E (X − u | X > u) . (2.5)

Since E(X) = β/(1 − ξ), M(u) can be expressed as

M (u) =
β

1 − ξ
+

ξ

1 − ξ
u , (2.6)

when 0 ≤ u < ∞ for 0 ≤ ξ < 1, and 0 ≤ u ≤ −β/ξ for ξ < 0. It is easy to see that M(u) must be linear
in u for the parts that follow GPD. Therefore, the starting point of the increasing linear slope in the
mean excess plot would be a reasonable choice for the threshold u. The details of the definition and
computation of mean excess function is presented in the introduction of Ghosh et al. (2010) and in
Section 4.3 of Coles et al. (2001).

As in McNeil and Frey (2000), we estimate F(u) by (N − Nu)/N with N, the number of total
observations and Nu, the number of exceedances over the threshold u. Then (2.2) can be written with
the maximum likelihood estimators of GPD parameters ξ and β in (2.4) as

F̂ (x) = Gξ̂,β̂ (x − u)
(
1 −

N − Nu

N

)
+

N − Nu

N

=

1 − (
1 +

ξ̂ (x − u)
β̂

)− 1
ξ̂

 Nu

N
+

N − Nu

N

= 1 −
Nu

N

1 +
ξ̂ (x − u)

β̂

− 1
ξ̂

 ,
for x > u, assuming ξ , 0. Setting F̂(x) to be q for q > (N − Nu)/N, we define the the tail estimator
x̂q as

x̂q = u +
β̂

ξ̂

( 1 − q
Nu/N

)−ξ̂
− 1

 . (2.7)

We use this tail estimator in calculating VaR for distributions with POT in Section 4.
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2.3. Loss distribution approach (LDA)

LDA is one of the most common risk-quantification methods to model operational losses. LDA
expresses the aggregated loss L for a given time period as

L =

N∑
i=1

Xi , (2.8)

where N is the frequency of losses and X1, X2, . . . , XN are independent individual losses. In the oper-
ational risk context, Xi’s are positive continuous random variables that represent severity of each loss.
Edwards et al. (2016) and Eling and Wirfs (2015) fitted negative binomial distribution and Poisson
distribution to the frequency of cyber losses, respectively. They modeled the loss severity by various
continuous distributions including lognormal and normal distributions. Following their studies, we
also compare negative binomial and Poisson distributions for the loss frequency in Section 3. For the
loss severity, we fit various continuous distributions that are commonly employed in actuarial contexts
such as exponential, lognormal, normal, skewed-normal, skewed-t, logistic, GPD, and normal inverse
Gaussian (NIG) distributions.

2.4. generalized autoregressive conditional heteroskedasticity model

Engle (1982) first proposed autoregressive conditional heteroskedasticity (ARCH) model, which
explains time-varying volatility and volatility clustering in asset returns. ARCH(p) models the inno-
vation term, at of a time series as follows.

at = σtεt, σ2
t = α0 +

p∑
i=1

αia2
t−i , (2.9)

where α0 > 0, αi ≥ 0, i = 1, . . . , p and εt is a white noise with zero mean and unit variance. As
seen from the model, conditional variance σ2

t is positively correlated with the squared error terms.
Hence, if the past innovations a2

t−i are large, then σ2
t becomes large, exhibiting volatility clustering.

According to Cont (2007), in the financial context, volatility clustering means that large price change
tends to cluster since the same movement continues for a while. See McNeil et al. (2015) for more
details.

Although the ARCH(p) model explains the change of variance over time by including the past
squared error terms, a high-order of p is required to describe the persisting high volatility. Bollerslev
(1986) expanded the ARCH model and introduced the GARCH model to overcome this problem. The
error term at of a time series is modeled by GARCH(p, q) as

at = σtεt, σ2
t = α0 +

p∑
i=1

αia2
t−i +

q∑
j=1

β jσ
2
t− j , (2.10)

where again εt is a white noise with zero mean and unit variance and α0 > 0, αi ≥ 0, β j ≥ 0,
for i = 1, . . . , p and j = 1, . . . , q. In practice, it is proven that the GARCH of a low order, such as
GARCH(1, 1), parsimoniously describes the volatility clustering and is widely used to fit financial
data, as shown in McNeil et al. (2015), Engle (2001), Bollerslev et al. (1992), and Bera and Higgins
(1993). We also fit our cyber loss data to the GARCH(1, 1) when we consider a time series model.
From (2.10), the conditional variance σ2

t under GARCH(1, 1) is

σ2
t = α0 + α1a2

t−1 + β1σ
2
t−1 , (2.11)
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Figure 1: Trends of monthly log loss amount.

where α1 +β1 < 1. For more details of GARCH, refer to Bollerslev (1986), Bera and Higgens (1993),
and McNeil et al. (2015).

2.5. Copula

Copula is a method to create a joint distribution from given marginal distributions and dependence
structure. According to Sklar (1959), there exists a unique copula function C defined on [0, 1]n in
(2.12) for a joint distribution function F and continuous univariate marginals F1, F2, . . . , Fn.

F (x1, x2, . . . , xn) = C (F1 (x1) , F2 (x2) , . . . , Fn (xn)) . (2.12)

Conversely, C is expressed using distribution functions as

C (u1, u2, . . . , un) = F
(
F−1

1 (u1) , F−1
2 (u2) , . . . , F−1

n (un)
)
,

where 0 ≤ ui ≤ 1, i = 1, . . . , n.
For example, t-copula is defined as

Ct
v,R (u1, u2, . . . , un) = tv,R

(
t−1
v (u1) , t−1

v (u2) , . . . , t−1
v (un)

)
, (2.13)
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where tv,R is the CDF of n-dimensional multivariate t-distribution with degrees of freedom v and
correlation matrix R, and t−1

v is the quantile function of t-distribution with degrees of freedom v.
Similarly, Gaussian copula is defined as

CGauss
R (u1, u2, . . . , un) = ΦR

(
Φ−1 (u1) ,Φ−1 (u2) , . . . ,Φ−1 (un)

)
, (2.14)

where Φ−1 is the inverse CDF of standard normal and ΦR is the joint CDF of an n-dimensional
normal distribution with zero mean vector and correlation matrix R. More details about copulas
are included in, for example, Byun and Song (2021). Di Clemente and Romano (2004) stated that
using t-copula captures dependence structure better than the Archimedean copulas because it has
n(n − 1)/2 + 1 parameters, whereas the Archimedean copulas have only one parameter for describing
the entire dependence structure. Kole et al. (2007) suggests that t-copula overwhelms Gaussian
and Gumbel copula in the goodness-of-fit test of copulas in risk management. Hence, we apply t
and Gaussian copula to our analysis. Although Gaussian copula allocates less probability to the tail
dependence, we also consider Gaussian copula to compare with t-copula.

3. Data analysis

3.1. Data description

Previous studies such as Carfora et al. (2010) and Edwards et al. (2016) examined cyber risk
with PRC data. Although the PRC data is open to public, it only describes data-breach events and
does not give details about loss amounts. On the other hand, SASRO OpRisk Global Data contains
detailed information about loss amounts of operational risk. According to SASRO OpRisk Global Data
document on the SAS homepage, Eling and Wirfs (2015), Eling and Wirfs (2016), and Eling and
Wirfs (2019), the SAS dataset is complete and reliable because it only holds cases that official media
have at least once reported. Note that it contains losses over $100,000. Here, we also use SASRO

OpRisk Global Data to measure cyber risk.
Cebula and Young (2010) defined cyber security risks as “operational risks to information and

technology assets that have consequences affecting the confidentiality, availability, or integrity of
information or information systems.” As operational risk encompasses cyber risk, we applied the
keyword searching method described in Eling and Wirfs (2015) to SASRO OpRisk Global Data to
extract cyber risk data. Eling and Wirfs (2015) defined that to be categorized as cyber risk, the
incident should satisfy three criteria: Critical assets, actor, and outcome. First, critical assets such as
PC, personal information, or records should be affected. Secondly, business asset losses must have
occurred by people’s actions, systems, and technical failures, internal or external events. Lastly, there
must be a clear outcome, e.g., lost, damaged or breached. We further included more keywords such
as code, program, spyware, online, internet, and manipulation, which are not mentioned in keywords
that Eling and Wirfs (2015) used, to extract more cyber loss events. After extracting cyber risk cases,
we read every event description, evaluated whether it fits the category of cyber losses, and included
only relevant events.

We obtained 3,048 cyber risk events through keyword filtering among 33,734 operational losses
from January 1995 to December 2020. Our study is relatively more recent than Eling and Wirfs
(2015), Eling and Wirfs (2016), and Eling and Wirfs (2019), where the data from January 1995 to
March 2014 were used. Figure 1 shows the overall trend of operational and cyber losses during the
time period that we used. We can see that monthly operational losses are larger than monthly cyber
losses and overall, cyber losses tend to increase as time goes by. Also, there are some extreme obser-
vations in cyber loss data. Histograms of two losses show different shapes in Figure 2, indicating that
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Figure 2: Histograms of monthly log loss amount.

Table 1: Descriptive statistics of monthly log operational and cyber losses

N Mean SD Median Skewness Kurtosis Max
Operational loss 312 1663.2 768.4 1539.6 0.411 2.273 3655.8

Cyber loss 312 150.2 121.1 135.5 1.952 12.812 1065.7

the monthly cyber loss distribution has a heavier tail than the monthly operational loss distribution.
Note that cyber losses are a part of operational losses, so it is a matter of fact that the total operational
losses in a month are larger than the total cyber losses.

In Table 1, the mean and the median of monthly log operational losses are larger than those of
monthly log cyber losses. But the skewness and the kurtosis of monthly log cyber losses are 1.952 and
12.812, respectively, which are about five times larger than those of monthly log operational losses. It
indicates that the distribution of monthly log cyber losses is more asymmetric and heavy-tailed than
monthly log operational losses. Also, from Figure 2, we notice that the monthly operational losses
have lighter tail than the monthly cyber losses. This finding aligns with Eling and Wirfs (2015), but
our study displays a more visible difference. Considering that cyber loss data shows a different pattern
from operational loss data, it would be meaningful to separate cyber losses out from the operational
losses and analyze cyber losses only.

Figure 1 (c) and (d) display the separate time series of monthly cyber losses in the financial sector
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Table 2: Descriptive statistics of monthly log cyber losses in financial and non-financial sectors

N Mean SD Median Skewness Kurtosis Max
Financial 312 98.9 102.5 86.5 2.924 21.205 989.7

Non-financial 312 51.3 39.8 45.4 0.998 3.783 203.7

Table 3: Train and test datasets in the rolling window method

Train set Test set
first window January 1995 ∼ December 2011 January 2012

second window February 1995 ∼ January 2012 February 2012
third window March 1995 ∼ February 2012 March 2012

.

.

.
.
.
.

.

.

.

last window December 2003 ∼ November 2020 December 2020

and in the non-financial sector. Losses in the financial sector show a similar pattern to the total monthly
cyber losses. The size of monthly cyber losses from the non-financial sector is much smaller than that
from the financial sector, especially after around 2005. On the other hand, as we looked at individual
losses in both sectors, the sizes of losses in the non-financial sector are not smaller than those in the
financial sector. According to Eling and Wirfs (2015), the average cyber loss amount from January
1995 to March 2014 in the non-financial sector is 1.7 times higher than that of the financial sector.
The reason that we see larger sizes of monthly cyber losses from the financial sector would be mainly
due to the high frequency of cyber losses in that sector.

From Table 2, the median of the monthly cyber loss from the financial sector is about two times
larger than that from the non-financial sector, and the maximum value from the financial sector is
almost five times larger than that from the non-financial sector. The kurtosis of the financial sector
is also much larger than that of the non-financial sector, which indicates that the financial sector has
a more heavy-tailed loss distribution than the non-financial sector. The reason would be the chain of
events, due to the correlation among companies. For example, the Madoff investment scandal (In-
ternational Banker, 2021) that occurred in 2009 in the financial sector affected many financial firms
and banks all around the world. The tendency of the cyber incidents that occur simultaneously in
the financial sector could make the distribution of the monthly financial cyber losses heavy-tailed.
Considering the different characteristics between two sectors, we had better investigate the loss distri-
butions of financial and non-financial sectors separately. The heavier tail of the monthly cyber losses
in the financial sector is depicted in Figure 2.

While previous studies, including Carfora et al. (2019), Eling and Wirfs (2015), and Edwards et
al. (2016), did not focus on the correlation between the financial and non-financial business sectors,
we would like to fit a joint distribution of losses of financial and non-financial sectors considering
their correlation. In our dataset, Kendall’s τ and Spearman’s ρ between monthly cyber losses of the
two industries are 0.39 and 0.54, respectively, both significant at the significance level of 0.05. For
fitting a joint distribution to bivariate data of monthly cyber losses from financial and non-financial
business sectors, we utilize a copula model. The joint distribution we obtain can be used to compute
the risk measure for a group of companies from both sectors by reflecting the dependency.

3.2. Model selection

This section will describe the model selection process. We use the rolling window method with
the window size of 17 years. Table 3 describes the train and test sets in the rolling window method
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Table 4: frequency distribution of the first rolling window : Goodness-of-fit

Log-likelihood AIC Chi-square test K-S test
Financial Negative binomial −555.51 1115.02 227.63∗∗∗ 0.06

(n = 1,071) Poisson −1001.77 2005.54 1470.60∗∗∗ 0.37∗∗∗

Non-financial Negative binomial −454.53 913.06 231.20∗∗∗ 0.04
(n = 627) Poisson −507.55 1017.10 508.26∗∗∗ 0.14∗∗∗

Note : n is the number of individual loss observations in the first window.

Table 5: Severity distribution of the first window : Goodness-of-fit

Log-likelihood AIC KS test AD test

Financial

Exponential −3955.22 7912.45 0.54*** 193.60***

(n = 1,071)

Normal −2365.13 4734.27 0.19*** 66.01***
Skewed-normal −2269.98 4545.96 0.27*** 87.65***

Skewed-t −2248.30 4504.60 0.30*** 107.71***
Gamma −2328.85 4661.70 0.20*** 71.12***
Weibull −2455.54 4915.09 0.19*** 60.92***
Logistic −2367.57 4739.14 0.22*** 90.23***
Cauchy −2529.41 5062.82 0.31*** 120.32***

GPD −3575.89 7155.78 0.36*** 120.88***
NIG −2276.13 4560.26 0.27*** 88.80***

Skewed-t with POT(95%) −2132.55 4277.10 / /

Non-financial

Exponential −2364.68 4731.356 0.51*** 135.67***

(n = 627)

Normal −1382.12 2768.250 0.09*** 6.51***
Skewed-normal −1375.68 2757.360 0.10*** 8.24***

Skewed-t −1375.68 2759.360 0.60*** 8.24***
Gamma −1384.94 2773.870 0.10*** 7.46***
Weibull −1415.49 2834.970 0.07*** 5.82***
Logistic −1391.19 2786.380 0.11*** 9.14***
Cauchy −1507.60 3019.200 0.13*** 14.89***

GPD −2462.19 4928.380 0.66*** 271.48***
NIG −1375.87 2759.740 0.10*** 7.90***

Skewed-normal with POT(92%) −1261.06 2532.120 / /

Note : n is the number of individual loss observations in the first window.

that we use throughout Sections 3 and 4. In Section 3.2.1, 3.2.2, and 3.2.3, we explain the steps of
selecting models with the train set of the first window of Table 3. We repeat the steps until the last
window and use the results in Section 4 to calculate and backtest VaR. Train sets are used for modeling
the distribution of cyber losses in Section 3.2.1 and test sets are used for measuring value-at-risk in
Section 4.

3.2.1. LDA

LDA assumes the loss amount from each cyber loss incidence independent and models the fre-
quency and severity distributions separately. Considering that Eling (2012) depicted skewed distri-
butions as “good” models for severity compared to other benchmark distributions such as t, normal
inverse Gaussian (NIG), and hyperbolic distributions, we include the skewed-normal and the skewed-
t distributions as candidates of our cyber loss severity and choose the most appropriate distribution
using AIC. We go through the following steps in order to find the distributions of loss severity and
loss frequency of financial and non-financial business sectors.

• Step 1 : We count the number of cyber loss occurrences per month and set this number as the
frequency of cyber loss in LDA. The log loss amount of each occurrence is the severity of cyber
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loss in LDA.

• Step 2 : We fit negative binomial and Poisson distributions to frequency data and select one with
the smaller AIC. For the severity, exponential, normal, skewed-normal, skewed-t, logistic, gamma,
Weibull, Cauchy, GPD, NIG with POT are considered. As before, we select the distribution that
has the smallest AIC value. The threshold of POT is chosen based on the mean excess plot. Repeat
this step for every window in Table 3.

• Step 3 : We generate 5,000 observations from the selected frequency distribution. According to the
generated frequency observations, we generate the appropriate number of severity observations to
obtain monthly log loss amounts. We will call this process Monte Carlo simulation as compared to
the modified historical simulation in Section 4.

The Goodness-of-fit results for the train set of the first window in Table 3 are shown in Tables 4
and 5.

In Table 4, we present Log-likelihood, AIC, and the values of test statistics of Chi-square test
and Kolmogorov-Smirnov (K-S) test. ∗∗∗ after a number indicates the significance at the level of 1%.
Negative binomial distribution has smaller AIC values than Poisson distribution for both of financial
and non-financial business sectors. Also, with a K-S test result not rejecting the null hypothesis,
we say that the negative binomial distribution is suitable for modeling the number of monthly cyber
loss occurrences of financial and non-financial industries. Edwards et al. (2015) analyzed total daily
cyber loss frequency through the PRC data and concluded that the negative binomial distribution fits
the daily frequency better than Poisson, binomial, and zero-inflated Poisson distributions. Eling and
Wirfs (2019) also suggested that the negative binomial distribution is better than Poisson distribution
in modeling monthly and yearly cyber loss frequency distributions. Our result coincides with Eling
and Wirfs (2019).

Among single distributions for severity from Table 5, the skewed-t distribution and the skewed-
normal distribution have the smallest AIC values in the financial and the non-financial sectors, re-
spectively. When we apply POT to these distributions; that is, fit the GPD to the data larger than the
threshold, the log-likelihood and AIC are all improved although we do not include all the results in
Table 5. It is worth noting that the single parametric distribution with the lowest AIC also gives the
smallest AIC value with POT method. This finding confirms the result of Eling and Wirfs (2015) but
is different from the result of Edwards et al. (2015) that suggests that cyber loss amounts be modeled
with the lognormal distribution. Considering that some of the monthly cyber losses are quite extreme
in Figure 2, it would be reasonable that POT works well in modeling the severity distribution. For
choosing the threshold values in POT, we employ the mean excess plot based on the Equations in
(2.5) and (2.6). Figure 3 shows the mean excess plots of financial and non-financial cyber losses.
The point where the slope of the graph changes to be positive could be an optimal-threshold as seen
in (2.6). Such values for the financial and the non-financial sectors are the 95th and 92th percentiles,
respectively. We use these percentiles for all rolling windows.

3.2.2. GARCH

Previous studies with SAS RO oprisk global data such as Eling and Wirfs (2015) viewed each
cyber loss as independent. However, as Eling and Wirfs (2016) suggested, one of cyber risks’ central
properties is dependency, either temporal or cross-sectional. Here, we present a time series model
that can incorporate the time dependency and in Section 3.2.3, we suggest a copula model to describe
the cross-sectional dependency. McNeil and Frey (2000) applied a two-step time series model to the
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Figure 3: Mean excess plot.

Figure 4: skewed-t and t innovation distributions for the financial (top) and non-financial (bottom) sectors.

stock return data. As a first step, they fit an appropriate GARCH-Type model to the return data using
a pseudo-maximum-likelihood approach, predict µt+1 and σt+1 from the fitted model, and obtain the
residuals. Secondly, they viewed the residuals as i.i.d. white noise and modeled the tail of residuals
using the extreme value theory (EVT). They used the EVT to estimate the tail estimator as described
in (2.7).
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Figure 5: Auto correlation function (ACF) and partial auto correlation function (PACF) of squared residuals of
ARMA(1, 1).

We fit ARMA(1, 1) to explain the conditional mean and GARCH(1, 1) to describe the conditional
variance part as follows. If Xt is the monthly loss at time t, our model is written as

Xt = µt + σtεt, (3.1)
µt = φ0 + φ1Xt−1 − θ1at−1,

at = σtεt,

σ2
t = α0 + α1a2

t−1 + β1σ
2
t−1.

Here, εt is a white noise with zero mean and unit variance, µt is the mean term of the time series and
σ2

t is the conditional variance of the time series.
Our study applies McNeil and Frey (2000)’s two-step method to monthly cyber loss amounts.

We practice GARCH models to incorporate the time-dependent attribute of monthly cyber loss. The
Lagrange multiplier test, known as the ARCH test, rejects the null hypothesis that the residuals from
the model are a series of white noise and Figure 5 shows that there are some autocorrelation between
the squared residuals of ARMA(1,1) model, indicating the necessity to apply a GARCH model.

Monthly cyber losses of financial and non-financial business sectors are analyzed separately fol-
lowing the next steps.

• Step 1 : For the train set of each window in Table 3, we fit ARMA(1, 1)-GARCH(1, 1) model. We
selected the order of ARMA model based on the criterion of small AIC values, and the order of
GARCH model from literature, as mentioned in Section 2.4.

• Step 2 : We use the AIC criterion to choose the innovation distribution, among Gaussian, t, and
skewed-t distributions.

• Step 3 : We extract standardized residuals from the fitted model and apply POT to get ξ̂ and β̂ in
(2.7). Then construct the tail estimator given in (2.7) using those values until the last window in
Table 3.

Since the tail of the cyber loss is generally heavier than the stock return data, we consider skewed-t
distribution as well as t-distribution to better explain the skewness and tail heaviness. In Table 6, we
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Table 6: time series models for the first window : Goodness-of-fit

Model Innovation Log-likelihood AIC

Financial

GARCH(1, 1)
Gaussian −1138.019 11.196

t −1105.699 10.889
skewed-t −1095.651 10.801

ARMA(1, 1)-GARCH(1, 1)
Gaussian −1123.756 11.076

t −1039.490 10.260
skewed-t −1014.358 10.023

Non-financial

GARCH(1, 1)
Gaussian −1051.310 10.346

t −1048.028 10.324
skewed-t −1002.051 9.8828

ARMA(1, 1)-GARCH(1, 1)
Gaussian −1014.501 10.005

t −1007.646 9.9475
skewed-t −984.5953 9.7313

present the result of the selected model for monthly cyber loss of financial and non-financial sectors,
for the first window in Table 3.

Table 6 shows that the AIC values of ARMA(1, 1)-GARCH(1, 1) with skewed-t innovations are
the smallest as 10.023 and 9.7313 for the financial and non-financial sector, respectively. We also
compare the goodness-of-fits of t and skewed-t distributions for the innovation distribution in Figure
4 and find that skewed-t distribution fits the standardized residuals of financial and non-financial
sectors better than t-distribution. Table 1, Table 2, and Figure 4 show that the standardized residuals
of monthly cyber log loss is not just fat-tailed and leptokurtic but also right-skewed. Therefore, we
choose ARMA(1, 1)-GARCH(1, 1) with skewed-t innovations for modeling monthly cyber log loss
data for both of financial and non-financial sectors.

3.2.3. Copula

So far, we considered LDA and GARCH as models that explain the tail heaviness and the time-
dependency of cyber loss data. In this section, we build a copula model to incorporate the correlation
structure between financial and non-financial business sectors. LDA is applied for modeling marginal
distributions. Here are the steps that we follow.

• Step 1 : Carry out Step 1 and Step 2 in Section 3.2.1 and obtain the aggregated monthly log loss
distributions for both of financial and non-financial sectors. Since we use the same dataset as in
Section 3.2.1, same frequency and severity distributions are selected, which are negative binomial
distribution and skewed-t with POT. These distributions are the marginal distributions of the copula
model. Then we form the correlation matrix from the original dataset.

• Step 2 : Using the correlation matrix obtained from Step 1, we build copula models using Gaussian
copula and t-copula for the joint distribution of financial and non-financial business sectors.

• Step 3 : Generate 5,000 observations from the model obtained in Step 2. These are a sample of
size 5,000 from the joint distribution of monthly cyber log loss data from two business sectors. We
compute the VaR predictions in Section 4 with random samples generated in this step.

For the train set of the first window in Table 3, Kendall’s τ between monthly cyber log losses
of financial and non-financial sectors was 0.386, which was statistically significant. Likewise, every
rolling window provided a statistically significant Kendall’s τ-value. By a copula model, we can
derive a joint distribution of the cyber losses of financial and non-financial sectors that incorporates
the cross-sectional dependency.
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Table 7: VaR estimates for the first window

90% 95% 99%

Financial

LDA 207.054 269.386 457.510
LDA-POT 196.112 265.937 445.872
GARCH 261.021 329.789 557.654

GARCH-POT 309.781 387.473 738.258

Non-financial

LDA 107.935 132.042 197.028
LDA-POT 106.454 131.798 183.979
GARCH 137.077 168.499 249.358

GARCH-POT 150.928 185.210 250.920

4. VaR and backtesting results

This section provides the VaR prediction of monthly cyber log loss data and backtesting results
from models we obtained in Section 3. For LDA, 90%, 95%, and 99% VaRs are computed using
Monte Carlo simulation and a modified historical simulation. The modified historical simulation we
used selects a parametric distribution for the frequency but generates observations for the severity
from historical observations. ‘LDA’ in Tables 7–9 are the results of VaR calculation through modified
historical simulation. For GARCH, we forecast the one-step ahead conditional mean and conditional
variance to calculate the VaR as

µ̂t+1 = φ̂0 + φ̂1Xt − θ̂1ât ,

σ̂2
t+1 = α̂0 + α̂1â2

t + β̂1σ̂
2
t .

Then, we compute 90%, 95%, and 99% VaRs using x̂q in (2.7) as

VaRq = µ̂t+1 + σ̂t+1 x̂q.

We calculate VaRs for each methodology and every window in Table 3. Table 7 shows VaR esti-
mates using the train dataset of the first window. For the financial sector, 90%, 95%, and 99% VaRs
for GARCH-POT are 309.781, 387.473, 738.258, respectively, which are larger than the correspond-
ing VaR estimates from GARCH. In the case of non-financial sector, using POT generally gives larger
VaR values than those without POT.

Note that not all the windows give the same result as Table 7. In Table 7, the VaR estimates of LDA
are larger than the VaR estimates of LDA-POT in both financial and non-financial business sectors.
However, for other windows, the VaR estimates are generally higher when the POT is applied since
POT models the heavy tail. We observe the same phenomenon in the VaR estimates of GARCH and
GARCH-POT in Table 7. Both the financial and non-financial sector’s GARCH-POT VaR estimates
are higher than those of GARCH. This tendency is confirmed in Figure 6 which displays the VaR
prediction when GARCH and GARCH-POT are applied to every rolling window. The solid and
dashed lines, which are the predictions of GARCH-POT, are above the dotted and dash-dotted lines,
respectively.

Table 8 contains the backtesting results of the LDA and GARCH for financial and non-financial
business sectors. For historical simulation, the negative binomial distribution was used for the fre-
quency. When LDA-POT is applied, the negative binomial distribution and skewed-t body with POT
were used for the frequency and the severity, respectively. ARMA(1, 1)-GARCH(1, 1) is fitted for
the GARCH model, and the POT is additionally applied for the standardized residuals to obtain the
VaR for GARCH-POT. Violation rate is defined as the portion of exceedance obtained by counting
the number of actual losses larger than the predicted VaR value. We desire this rate to be as close as
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Figure 6: VaR prediction using GARCH and GARCH-POT.

possible to the suggested significance level, 0.1, 0.05, and 0.01. Kupiec test (Kupiec, 1995), known
as the proportion of failure test, is performed to determine whether or not the prediction of VaR is
proper. We expect not to reject the null hypothesis that the observed failure rate is the same as the
proposed confidence level. We confirm that the p-values of Kupiec tests are large enough so that the
predictions are proper.

From Table 8, we can see that applying POT to the LDA in the financial sector performs bet-
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Table 8: Violation rates of VaR prediction

Financial Non-financial
LDA LDA-POT GARCH GARCH-POT LDA LDA-POT GARCH GARCH-POT

90% VaR 0.083 0.102 0.120 0.092 0.056 0.093 0.111 0.074
95% VaR 0.056 0.056 0.065 0.056 0.019 0.019 0.037 0.037
99% VaR 0.009 0.009 0.019 0 0 0.009 0.009 0.009

LDA means the modified historical simulation, LDA-POT means the LDA method with POT, GARCH means
the GARCH model, and GARCH-POT means the GARCH model with POT.

Table 9: Violation rate with joint distributions: Bootstrap assumes independence between two business sectors

Violation rate
Bootstrap Gaussian copula t-copula

90% VaR 0.144 0.111 0.111
95% VaR 0.418 0.056 0.046
99% VaR 0.006 0.009 0.009

ter than the historical simulation. When tried on the non-financial sector, the LDA-POT seemed to
overestimate 95% VaR but properly evaluate 90% and 99% VaR. Although the 95% VaR calculated
through the LDA method is overestimated in the non-financial sector, modeling the severity of cyber
loss with the LDA-POT in the financial and non-financial sectors is generally better than modeling it
with the LDA in terms of preventing extreme losses.

As for the time series model, GARCH-POT overestimated 99% VaR of the financial sector but
showed a better performance in 90% and 95% VaRs than GARCH model. On the other hand, GARCH
model provides a more accurate result in terms of violation rates than GARCH-POT in case of non-
financial sector. This could be explained by Table 2 where non-financial sector’s monthly cyber log
loss has a much smaller kurtosis than that of financial sector’s loss. Since non-financial sector’s
monthly cyber log losses are not as extreme as those of the financial sector, applying POT to GARCH
model does not improve the VaR prediction much. Hence, implementing GARCH-POT seems more
advantageous only for the financial sector.

Table 9 shows the VaR backtesting results for copula models. To see the effect of correlation be-
tween two business sectors, we include the backtesting results from bootstrap samples. The bootstrap
results are obtained through resampling the monthly log losses of financial and non-financial sectors
separately 5,000 times without considering time order and correlations between the two business sec-
tors. Then, two sectors’ VaR were added by giving each sector’s VaR a 50% weight. This method
destroys the correlation structure of original data, so that it can be used as a benchmark for bivari-
ate analysis. Both Gaussian and t-copulas performed better than bootstrap, especially for 95% VaR.
The violation rate of t-copula is slightly closer to the target rate than Gaussian when the confidence
level is 95%, but there is not much difference. The results we obtained here implies that modeling
through copulas derives satisfactory outcomes with a statistically significant correlation. Besides,
copula models are so flexible that we can reflect the dependency among business sectors while we fit
each marginal distribution separately.

5. Conclusion

This study focused on modeling cyber loss distributions and the computation of their risk mea-
sures. We divided cyber loss data into financial and non-financial business sectors and modeled the
loss distribution separately. Generally, financial sector had more extreme monthly cyber losses than
non-financial sector. And the monthly cyber loss data showed characteristics as asymmetry and tail
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heaviness, time dependency, and correlation among business sectors. The long-tail of cyber losses led
us to combine POT with the LDA, a widely used operational risk management model. In the actuarial
context, the LDA is widely used for risk management due to the ease of obtaining parametric loss
distribution and calculating minimum capital amounts. Thus, we applied the same technique to cyber
losses based on previous studies such as Edwards et al. (2016) and Eling (2012). Aligned with these
studies, we fitted the loss frequency with negative binomial distribution rather than Poisson distribu-
tion. For severity, modeling with GPD in the tail and skewed-t or skewed-normal body distributions
provided a good fit. As for the risk measure, value-at-risk values calculated using LDA-POT were
better than those from the historical simulation in both of financial and non-financial sectors.

Moreover, as we observed volatility clustering from the monthly cyber loss data in Section 3.1 and
Section 3.2.2, we tried GARCH-Type models. We fitted ARMA(1, 1)-GARCH(1, 1) and found that
the standardized residuals displayed a heavy and right-skewed tail. When we compared GARCH and
GARCH-POT, GARCH-POT performed better in the financial sector. It is expected from the extreme
observations in the monthly cyber log loss of financial sector in Figure 2. In case of non-financial
business sector, GARCH-POT overestimated 90% VaR, which was expected because monthly cyber
log losses of non-financial sector is not as extreme as those of financial sector. In practice, since
calculating the correct minimum capital amount for cyber loss will benefit financial institutions in
forestalling the worst scenario, we suggest that financial industries model their monthly cyber loss
with time series model and POT. On the other hand, we conclude that GARCH would be just fine for
non-financial sector.

Lastly, we observed the statistically significant correlation between monthly cyber losses of fi-
nancial and non-financial sectors. Thus we utilized copula models to construct a joint distribution of
financial and non-financial sectors’cyber losses and compared them with the bootstrap method. Once
we obtain a joint distribution reflecting the correlation structure, calculating the risk measure for dif-
ferent business sectors would become more accurate. Gaussian and t-copulas both performed quite
well in computing VaR as seen from the backtesting results.

Due to the lack of information in the dataset, we could not analyze the patterns of individual
cyber loss observations. It would be good if we could see the distributional properties of individual
observations in the future. Also, we would like to supplement our cyber loss model with the enlarged
data in the future by combining various cyber loss datasets. Furthermore, we would like to analyze
monthly cyber losses in more detailed classification by applying high-dimensional analysis.
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