DOI QR코드

DOI QR Code

Evaluation of the Fiber Separation Method and Differences in the Storage Root Fiber Content among Sweetpotato (Ipomoea batatas L.) Varieties

고구마 괴근의 섬유질 분리 조건 탐색 및 품종별 섬유질 함량 차이

  • Won Park (Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration) ;
  • Im been Lee (Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration) ;
  • Mi Nam Chung (Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration) ;
  • Hyeong-Un Lee (Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration) ;
  • Tae Hwa Kim (Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration) ;
  • Kyo Hwui Lee (Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration) ;
  • Sang Sik Nam (Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration)
  • 박원 (국립식량과학원 바이오에너지작물연구소) ;
  • 이임빈 (국립식량과학원 바이오에너지작물연구소) ;
  • 정미남 (국립식량과학원 바이오에너지작물연구소) ;
  • 이형운 (국립식량과학원 바이오에너지작물연구소) ;
  • 김태화 (국립식량과학원 바이오에너지작물연구소) ;
  • 이교휘 (국립식량과학원 바이오에너지작물연구소) ;
  • 남상식 (국립식량과학원 바이오에너지작물연구소)
  • Received : 2022.12.14
  • Accepted : 2023.02.06
  • Published : 2023.03.01

Abstract

Fiber content in the storage roots of sweetpotato varies between different varieties. For examples, the high fiber content of certain types has a poor texture when steamed or roasted. This study was conducted to evaluate the optimal sieve mesh size for separating fibers, the chemical composition of fibers and differences in fiber content among different varieties. We found that the separated fiber content (dry weight) of mashed and steamed sweetpotato was higher after washing three times (143.3 mg/100 g) compared with that washed five times (128.4 mg/100 g). The Hogammi variety remained 85.9% of total fiber content at 10 mesh (2,000 ㎛) and 9.6% of total fiber content at 30 mesh (600 ㎛), and Jinyulmi remained 74.9 and 16.7% of total fiber content , respectively. Therefore, a 30 mesh sieve was considered the most suitable for fiber separation. Among the 10 studied cultivars, Jinhongmi showed the lowest amount of fiber (24.8 mg/100 g) and Hogammi had the highest amount (111.4 mg/100 g), which was 4.5 times larger than that of Jinhongmi. Cellulose, hemicellulose and lignin content of separated fibers showed no difference between the viscous-type Hogammi and powdery-type Jinyulmi varieties, with averages of 32.5, 22.3 and 29.6%, respectively. Correlation results using the Image J program showed a significant correlation between the distribution of the stained area and the fiber content (R = 0.74, p < 0.05). Staining distribution differed among varieties, suggesting that a simple fiber content test could be performed using the staining method on raw sweetpotato. These results provide useful information to help inform farmers on the fiber content of different sweetpotato varieties.

고구마 괴근에 함유되어 있는 섬유질 함량은 품종에 따라 차이가 있다. 일부 품종에서 찌거나 구워서 섭취 시 입안에서 감지되는 섬유질 함량이 많아 식감을 떨어뜨리는 요인이 되고 있다. 본 시험은 섬유질 분리를 위한 거름망(체)의 적정 눈 크기를 탐색하여 분리 방법을 확립하고, 분리된 섬유질의 조성성분, 염색법을 이용한 섬유질 간이검정 가능성, 그리고 품종 간에 섬유질 함량 차이를 구명하고자 수행한 결과는 다음과 같다. 1. 찐 고구마를 으깬 후 3회 세척하여 섬유질 함량을 측정한 결과 143.3 mg/100 g으로 5회 세척(128.4 mg/100 g)에 비해 분리된 섬유질 양이 많아 3회 세척이 유리하였다. 2. 호감미 품종은 체의 눈이 큰 10 mesh (85.9%)와 30 mesh (9.6%)에서 95.5%가 잔류되었고 진율미 품종은 10 mesh (74.9%) 및 30 mesh (16.7%)에서 87.6%가 잔류되어 섬유질 분리를 위한 체의 눈은 30 mesh (600 ㎛)가 적당하였다. 3. 고구마 품종별 섬유질 함량 분석 결과, 진홍미가 가장 낮았고(24.8 mg/100 g), 호감미(111.4 mg/100 g)으로 가장 높아 호감미의 섬유질 함량은 진홍미의 4.5배 이상이었다. 4. 호감미와 진율미 품종에서 분리된 섬유질의 셀룰로스, 헤미셀룰로스 및 리그닌의 함량은 비슷한 함량을 나타내었고 2품종의 평균은 각각 32.5, 22.3 및 29.6%이었다. 5. 염색된 면적의 분포도와 섬유질 함량과의 상관계수는 0.79 (p < 0.001)로 유의성이 있었으며, 품종 간 염색 분포도가 다르게 나타나 생고구마를 이용한 염색방법으로 섬유질 함량에 대한 간이검정이 가능할 것으로 판단되었다.

Keywords

Acknowledgement

본 논문은 농촌진흥청 시험연구사업(과제번호: PJ01513201)으로 수행된 결과임.

References

  1. AFRASY. 2021. Agriculture, Food and Rural Affairs Statistics Yearbook. Ministry of Agriculture, Food and Rural Affairs.
  2. Brunt, K. and P. Sanders. 2013. Improvement of the AOAC 2009.01 total dietary fibre method for bread and other high starch containing matrices. Food Chem. 140 : 574-580. https://doi.org/10.1016/j.foodchem.2012.10.109
  3. Buri, B. J. 1997. Beta carotene and human health; A review of current research. Nutr. Res. 17 : 547-580. https://doi.org/10.1016/S0271-5317(97)00011-0
  4. Cha, Y. L., S. M. Park, Y. H. Moon, K. S. Kim, J. E. Lee, D. E. Kwon, and Y. G. Kang. 2019. Optimization of KOH pretreatment conditions from Miscanthus using high temperature and extrusion system. J. Korean Appl. Sci. Technol. 36 : 1243-1252.
  5. Ferreira, T. and W. Rasband. 2012. Image J user guide. ImageJ/Fiji, 1 : 155-161.
  6. Gorshkova, T., N. Brutch, B. Chabbert, M. Deyholos, T. Hayashi, L-Y. Simcha, Ewa J. Mellerowicz, C. Morvan, G. Neutelings, and G. Pilate. 2012. Plant fiber formation: State of the art, recent and expected progress, and open questions. Critical Rev. Plant Sci. 31 : 201-228. https://doi.org/10.1080/07352689.2011.616096
  7. Han, S. K., Y. S. Song, S. H. Ahn, H. U. Lee, J. S. Lee, M. N. Chung, and K. G. Park. 2012. Difference of growth and root characteristics of sweetpotato by cultivated region. Korean J. Crop Sci. 57 : 262-270. https://doi.org/10.7740/kjcs.2012.57.3.262
  8. Huang, A. S., L. Tanudjaja, and D. Lum. 1999. Content of alpha-, beta-carotene, and dietary fiber in 18 sweetpotato varieties grown in Hawaii. J. Food Compos. Anal. 12 : 147-151. https://doi.org/10.1006/jfca.1999.0819
  9. Jones, A., P. D. Dukes, M. G. hamilton, and R. A. Baumgardner. 1980. Selection for low fiber content in sweet potato. Hortsci. 15 : 797-798. https://doi.org/10.21273/HORTSCI.15.6.797
  10. Leighton, C. S., H. C. Schonfeldt, and R. Kruger. 2010. Quantitative descriptive sensory analysis of five different cultivars of sweet potato to determine sensory and textural profiles. J. Sensory Studies. 25 : 2-18. https://doi.org/10.1111/j.1745-459X.2008.00188.x
  11. Leksrisompong, P. P., M. E. Whitson, V. D. Truong, and M. A. Drake. 2012. Sensory attributes and consumer acceptance of sweet potato cultivars with flesh colors. J. Sensory Studies. 27 : 59-69. https://doi.org/10.1111/j.1745-459X.2011.00367.x
  12. Mazzoli, A. and O. Favoni. 2012. Particle size, size distribution and morphological evaluation of airborne dust particles of diverse woods by Scanning Electron Microscopy and image processing program. Powder Technol. 225 : 65-71. https://doi.org/10.1016/j.powtec.2012.03.033
  13. Mei, X., T. H. Mu, and J. J. Han. 2010. Composition and physicochemical properties of dietary fiber extracted from residues of 10 varieties of sweet potato by a sieving method. J. Agric. Food Chem. 58 : 7305-7310. https://doi.org/10.1021/jf101021s
  14. Mitra, P. P. and D. Loque. 2014. Histochemical staining of Arabidopsis thaliana secondary cell wall elements. J. Visualized Experiments. 13 : 51381.
  15. Panda, S. H., S. K. Naskar, and R. C. Ray. 2006. Production, proximate and nutritional evaluation of sweet potato crud. J. Food Agric. Environ. 4 : 124-127.
  16. Rao, V. N. M., D. D. Hamann, and E. G. Badanga. 1974. Mechanical testing as a measure of kinesthetic quality of raw and baked sweetpotatoes. Am. Soc. Agric. Biol. Engin. 17 : 1187-1190. https://doi.org/10.13031/2013.37058
  17. Singh, V., H. Zemach, S. Shabtai, R. Aloni, J. yang, P. Zang, L. Sergeeva, W. Literink, and N. Firon. 2021. Proximal and distal parts of sweetpotato adventitious roots display differences in root architecture, lignin, and starch metabolism and their developmental fates. Front. Plant Sci. 11 : 1-15.
  18. Solis, J., A. Villordon, N. Baisakh, D. LaBonte, and N. Firon. 2014. Effect of drought on storage root development and gene expression profile of sweetpotato under greenhouse and field conditions. J. Am. Soc. Hort. Sci. 139 : 317-324. https://doi.org/10.21273/JASHS.139.3.317
  19. Suda, I., T. Oki, M. Masuda, M. Kobayashi, and S. Furuta. 2003. Physiological functionally of purple-fleshed sweet potato containing anthocyanins and their utilization in foods. Japan Agric. Res. Quar. 37 : 167-173. https://doi.org/10.6090/jarq.37.167
  20. Teow, C. C., V. D. Truong, and R. F. Mcfeeters. 2007. Antioxidant activities, phenolic and β-carotene contents of sweetpotato genotypes with varing flesh colours. Food Chem. 103 : 829-838. https://doi.org/10.1016/j.foodchem.2006.09.033
  21. Togari, Y. 1950. A study of tuberous root formation in sweet potato. Bulletin of Natural and Agricultural Experimental Station. Tokyo. 68 : 1-96.
  22. Villordon, A. Q., D. R. La Bonte, N. Firon, and E. Carey. 2013. Variation in nitrogen rate and local availability alter root architecture attributes at the onset of storage root initiation in 'Beauregard' sweetpotato. Hortsci. 48 : 808-815. https://doi.org/10.21273/HORTSCI.48.6.808
  23. Yoshimoto, M., O. Yamakawa, and H. Tanoue. 2005. Potential chemopreventive properties and varietal difference of dietary fiber from sweetpotato (Ipomoea batatas L.) root. Japan Agric. Res. Quar. 39 : 37-43. https://doi.org/10.6090/jarq.39.37
  24. Woolfe, J. A. 1992. Sweet potato: An untapped food resource, Cambridge University Press, Cambridge. pp. 57, 142-143.