DOI QR코드

DOI QR Code

Agro-morphological Characterization of Korean, Chinese, and Japanese Adzuki Bean (Vigna angularis (Willd.) Ohwi & Ohashi) Genotypes

  • Kebede Taye Desta (National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Yu-Mi Choi (National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Jung-Yoon Yi (National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Sukyeung Lee (National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Myoung-Jae Shin (National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Xiao-Han Wang (National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Hyemyeong Yoon (National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration)
  • Received : 2023.02.09
  • Accepted : 2023.02.24
  • Published : 2023.03.01

Abstract

Adzuki beans have gained popularity in recent years due to their health benefits. Breeding of Adzuki beans is less favorable than with other legumes due to low genetic diversity. This study aimed to evaluate the genetic diversity of 252 adzuki bean germplasms from China, Japan, and Korea using 18 agro-morphological parameters and comparing their performance to three prominent Korean cultivars: Geomguseul, Arari, and Chungjupat. Leaf shape, pod color, and seed coat color were among the qualitative traits that showed wide variations. The quantitative variables also showed wide variations among adzuki bean germplasms. Although there was no significant difference (p < 0.05), the average rate of germination declined in the order of Korean (91.44%) > Chinese (91.31%) > Japanese (87.47%) adzuki beans. Chinese adzuki beans needed fewer days to flower (DF, 58.22 days) and days to mature (DM, 107.13 days), which varied significantly compared to the Korean and Japanese adzuki beans (p < 0.05). The average number of pods per plant (PPP) and one-hundred seeds weight (HSW) were higher in Japanese adzuki beans compared to the Korean and Chinese adzuki beans although the variation of each was not significant. Almost 29.76% of the accessions had early-blooming flowers, 3.97% were premature, 21.43% produced more PPP, and 3.97% yielded more SPP compared to control cultivars. Results of hierarchical cluster and principal component analyses revealed three clusters with significant variation in all quantitative variables except for RG (p < 0.05). The key factors in multivariate analyses were DF, DM, and HSW. Our study investigated the genetic diversity of adzuki bean accessions and identified ten early maturing and ten high PPP-yielding accessions. Our findings would help farmers and breeders to select the top-performing accessions that can provide them with various options.

Keywords

Acknowledgement

This research was funded by the Research Program for Agricultural Science and Technology Development (Project No. PJ015788) of the National Institute of Agricultural Sciences, Rural Development Administration (Jeonju, Korea).

References

  1. Ammar, M. H., S. S. Alghamdi, H. M. Migdadi, M. A. Khan, E. H. El-Harty, and S. A. Al-Faifi. 2015. Assessment of Genetic Diversity among Faba Bean Genotypes Using Agro-Morphological and Molecular Markers. Saudi Journal of Biological Sciences 22(3) : 340-350. https://doi.org/10.1016/j.sjbs.2015.02.005.
  2. Aslinah, L. N. F., M. Mat Yusoff, and M. R. Ismail-Fitry. 2018. Simultaneous Use of Adzuki Beans (Vigna angularis) Flour as Meat Extender and Fat Replacer in Reduced-Fat Beef Meatballs (Bebola Daging). Journal of Food Science and Technology 55(8) : 3241-3248. https://doi.org/10.1007/s13197-018-3256-1.
  3. Bhatt, K. C., P. K. Malav, P. G. Gore, K. Tripathi, R. S. Rathi, T. L. Tiwari, and S. P. Alhawat. 2021. A note on distribution and potential of Japanese wild adzuki bean [Vigna angularis var. nipponensis (Ohwi) Ohwi and H. Ohashi] in India. Genetic Resources and Crop Evolution 68 : 2157-2166. https://doi.org/10.1007/s10722-021-01130-7.
  4. Chapman, M. A., Y. He, and M. Zhou. 2022. Beyond a reference genome: pangenomes and population genomics of under-utilized and orphan crops for future food and nutrition security. New Phytologist 234 : 1583-1597. https://doi.org/10.1111/nph.18021.
  5. Chu, L., P. Zhao, X. Huang, B. Zhao, Y. Li, K. Yang, and P. Wan. 2021. Genetic Analysis of Seed Coat Colour in Adzuki Bean (Vigna angularis L.). Plant Genetic Resources: Characterisation and Utilisation 19(1) : 67-73. https://doi.org/10.1017/S1479262121000101.
  6. Chun, H. C., S. Lee, Y. D. Choi, D. H. Gong, and K. Y. Jung. 2021. Effects of Drought Stress on Root Morphology and Spatial Distribution of Soybean and Adzuki Bean. Journal of Integrative Agriculture 20(10) : 2639-2651. https://doi.org/10.1016/S2095-3119(20)63560-2.
  7. Dong, W., Y. Zhang, Y. Zhang, S. Ren, Y. Wei, and Y. Zhang. 2016. Short-Day Photoperiod Effects on Plant Growth, Flower Bud Differentiation, and Yield Formation in Adzuki Bean (Vigna angularis). International Journal of Agriculture and Biology 18(2) : 337-345. https://doi.org/10.17957/IJAB/15.0091.
  8. Gerrano, A. S. and Z. G. Thungo. 2022. Mavengahama, S. Phenotypic description of elite cowpea (Vigna ungiculata L. Walp) genotypes grown in drought-prone environments using agronomic traits. Heliyon 8: e08855. https://doi.org/10.1016/j.heliyon.2022.e08855.
  9. Ha, T. J., J. E. Park, K.-S. Lee, W. D. Seo, S.-B. Song, M.-H. Lee, S. Kim, J.-I. Kim, E. Oh, S.-B. Pae, D.-Y. Kwak, and J. H. Lee. 2021. Identification Of Anthocyanin Composition in Black Seed Coated Korean Adzuki bean (Vigna Angularis) by NMR and UPLC-Q-Orbitrap-MS/MS and Screeing for their Antioxidant Properties using Different Solvent Systems. Food Chemistry 346 : 128882. https://doi.org/10.1016/j.foodchem.2020.128882.
  10. Han, N., K. S. Woo, J. Y. Lee, S. B. Song, Y.-Y. Lee, M. Kim, M. S. Kang, and H.-J. Kim. 2022. Comparison of Physicochemical Characteristics, Functional Compounds, and Physiological Activities in Adzuki Bean Cultivars. Journal of the Korean Society of Food Science and Nutrition 51(5) : 428-438. https://doi.org/10.3746/jkfn.2022.51.5.428 (In Korean).
  11. Han, X., F.Yang, Y. Zhao, H. Chen, Z. Wan, L. Li, L. Sun, L. Liu, C. Jiao, C. Liu, and A. Sha. 2021. ITRAQ Based Protein Profile Analysis Revealed Key Proteins Involved in Regulation of Drought-Tolerance during Seed Germination in Adzuki Bean. Scientific Reports 11(1) : 1-12. https://doi.org/10.1038/s41598-021-03178-y.
  12. Horiuchi, Y., H. Yamamoto, R. Ogura, N. Shimoda, H. Sato, and K. Kato. 2015. Genetic Analysis and Molecular Mapping of Genes Controlling Seed Coat Colour in Adzuki Bean (Vigna angularis). Euphytica 206(3) : 609-617. https://doi.org/10.1007/s10681-015-1461-9.
  13. Hu, L., G. Luo, X. Zhu, S. Wang, L. Wang, X. Cheng, and H. Chen. 2022. Genetic Diversity and Environmental Influence on Yield and Yield-Related Traits of Adzuki Bean (Vigna angularis L.). Plants 11(9) : 1-14. https://doi.org/10.3390/plants11091132.
  14. Jeong, E. W., S. Y. Park, Y. S. Yang, Y. J. Baek, D. M. Yun, H. J. Kim, G. W. Go, and H. G. Lee. 2021. Black Soybean and Adzuki Bean Extracts Lower Blood Pressure by Modulating the Renin-Angiotensin System in Spontaneously Hypertensive Rats. Foods 10(7) : 1571. https://doi.org/10.3390/foods10071571.
  15. Johnson, J. B., P. Neupane, S. P. Bhattarai, T. Trotter, and M. Naiker. 2022. Partitioning of nutritional and phytochemical constituents in nine Adzuki bean genotypes from Australia. Journal of Agriculture and Food Research 10 : 100398. https://doi.org/10.1016/j.jafr.2022.100398.
  16. Kang, Y. J., D. Satyawan, S. Shim, T. Lee, J. Lee, W. J. Hwang, S. K. Kim, P. Lestari, K. Laosatit, K. H. Kim, T. J. Ha, A. Chitikineni, M. Y. Kim, J. M. Ko, J. G. Gwag, J. K. Moon, Y. H. Lee, B. S. Park, R. K. Varshney, and S. H. Lee. 2015. Draft Genome Sequence of Adzuki Bean, Vigna angularis. Scientific Reports 5 : 1-8. https://doi.org/10.1038/srep08069.
  17. Keneni, G., E. Bekele, E. Getu, M. Imtiaz, T. Damte, B. Mulatu, and K. Dagne. 2011. Breeding Food Legumes for Resistance to Storage Insect Pests: Potential and Limitations. Sustainability 3(9) : 1399-1415. https://doi.org/10.3390/su3091399.
  18. Kim, E.-H., H.-K. Song, Y.-J. Park, J.-R. Lee, M.-Y. Kim, and I.-M. Chung. 2011. Determination of Phenolic Compounds in Adzuki Bean (Vigna angularis) Germplasm. Korean Journal Crop Science 56(4) : 375-384. https://doi.org/10.7740/kjcs.2011.56.4.375.
  19. Li, H., L. Zou, X.-Y. Li, D.-T. Wu, H.-Y. Liu, H.-B. Li, and R.-Y. Gan. 2022. Adzuki bean (Vigna angularis) : Chemical compositions, physicochemical properties, health benefits, and food applications. Comprehensive Reviews in Food Science and Food Safety 21 : 2335-2362. https://doi.org/10.1111/1541-4337.12945.
  20. Li, J., C. Qi, J. Gu, and Z. Jin. 2020a. Effect of Sire Population on the Genetic Diversity and Fitness of F1 Progeny in the Endangered Chinese Endemic Sinocalycanthus Chinensis. Ecology and Evolution 10(9) : 4091-4103. https://doi.org/10.1002/ece3.6179.
  21. Li, W. Y., C. Wang, H. H. Shi, B. Wang, J. X. Wang, Y. S. Liu, J. Y. Ma, S. Y. Tian, and Y. W. Zhang. 2020b. Genome-Wide Analysis of Ethylene-Response Factor Family in Adzuki Bean and Functional Determination of VaERF3 under Saline-Alkaline Stress. Plant Physiology and Biochemistry 147 : 215-222. https://doi.org/10.1016/j.plaphy.2019.12.019.
  22. Li-xia, W., W. Jie, L. Gao-ling, Y. Xing-xing, G. Dan, H. Liangliang, W. Suhua, C. Hong-lin, C. Xin, and C. Xu-zhen. 2021. Construction of a high-density adzuki bean genetic map andevaluation of its utility based on a QTL analysis of seed size Journal of Integrative Agriculture 20(7) : 1753-1761. https://doi.org/10.1016/S2095-3119(20)63343-3.
  23. Pandiyan, M., P. Sivakumar, A. Krishnaveni, C. Sivakumar, V. Radhakrishnan, M. Vaithiyalingam, and N. Tomooka. 2021. Adzuki bean In the Beans and the Peas, Editor(s) : Aditya Pratap, Sanjeev Gupta, Woodhead Publishing pp. 89-103. https://doi.org/10.1016/B978-0-12-821450-3.00006-8.
  24. Rashid, M., Z. Yousaf, M. N. Ullah, M. Munawar, N. Riaz, A. Younas, A. Aftab, and B. Shamsheer. 2020. Genetic Variability Assessment of Worldwide Spinach Accessions by Agro-Morphological Traits. Journal of Taibah University for Science 14(1) : 1637-1650. https://doi.org/10.1080/16583655.2020.1853920.
  25. Redden, R. J., K. E. Basford, P. M. Kroonenberg, F. M. A. Islam, R. Ellis, S. Wang, Y. Cao, X. Zong, and X. Wang. 2009. Variation in Adzuki Bean (Vigna angularis) Germplasm Grown in China. Crop Science 49(3) : 771-782. https://doi.org/10.2135/cropsci2008.03.0175.
  26. Rho, C. W., S. Y. Son, S. T. Hong, K. H. Lee, and I. M. Ryu. 2003. Agronomic characters of Korean Adzuki Beans (Vigna angularis (Willd.) Ohwi & Ohashi). Korean Journal of Plant Resources 16(2) : 147-154 (In Korean).
  27. Song, H., P. P. Zhang, X. L. Gao, S. X. Xu, Q. Zhou, B. L. Feng, Y. Fan, and Y. P. Xie. 2016. Identification and Bioassay of Allelopathic Substances from Plant and Rhizosphere Soil Extracts of Adzuki Bean (Vigna angularis [Willd.] Ohwi & H. Ohashi.). Journal of Agricultural Science 8(11) : 30-37. http://dx.doi.org/10.5539/jas.v8n11p30.
  28. Srivastava, R., S. Kumar, Y. Kobayashi, K. Kusunoki, P. Tripathi, Y. Kobayashi, H. Koyama, and L. Sahoo. 2018. Comparative Genome-Wide Analysis of WRKY Transcription Factors in Two Asian Legume Crops: Adzuki Bean and Mung Bean. Scientific Reports 8(1) : 1-19. https://doi.org/10.1038/s41598-018-34920-8.
  29. Takahama, U., R. Yamauchi, and S. Hirota. 2016. Antioxidative flavonoids in adzuki-meshi (rice boiled with adzuki bean) react with nitrite under simulated stomach conditions. Journal of Functional Foods 26 : 657-666. https://doi.org/10.1016/j.jff.2016.08.032.
  30. Takahama, U., S., Hirota, and E.Yanase. 2019. Slow Starch Digestion in the Rice Cooked with Adzuki Bean: Contribution of Procyanidins and the Oxidation Products. Food Research International 119 : 187-195. https://doi.org/10.1016/j.foodres.2019.01.062.
  31. Tayade, R., S. Kim, P. Tripathi, Y. Choi, J. Yoon, and Y. Kim. 2022. High-Throughput Root Imaging Analysis Reveals Wide Variation in Root Morphology of Wild Adzuki bean (Vigna angularis) Accessions. Plants 11 : 405. https://doi.org/10.3390/plants11030405.
  32. Tripathi, P. and Y. Kim. 2022. Investigation of Root Morphological and Architectural Traits in Adzuki Bean (Vigna angularis) Cultivars Using Imagery Data. Korean Journal of Crop Sciences 67(1) : 67-75. https://doi.org/10.7740/kjcs.2022.67.1.067.
  33. Wang, L., J. Wang, X. Cheng, and J. M. Al-Khayri. 2019. Adzuki Bean (Vigna angularis (Willd.) Ohwi & Ohashi) Breeding In Advances in Plant Breeding Strategies, Volume 7, eds. Jain, Shri Mohan and Johnson, Dennis V. Springer International Publishing pp. 1-23. https://doi.org/10.1007/978-3-030-23400-3_1.
  34. Wang, S. M., R. J. Redden, J. P. Hu-Jiapeng, P. J. Desborough, P. L. Lawrence, and T. Usher. 2001. Chinese adzuki bean germplasm: Evaluation of agronomic traits. Australian Journal of Agricultural Resources 52 : 671-681. https://doi.org/10.1071/AR00104
  35. Yadav, U., N. Singh, A. Kaur, and S. Thakur. 2018. Physico-Chemical, Hydration, Cooking, Textural and Pasting Properties of Different Adzuki Bean (Vigna angularis) Accessions. Journal of Food Science and Technology 55(2) : 802-810. https://doi.org/10.1007/s13197-017-2994-9.
  36. Yoon, S.-T., Y. Qin, T.-H. Kim, S.-H. Choi, J.-C. Nam, and J.-S. Lee. 2012. Agronomic Characteristics of Adzuki Bean (Vigna angularis W.F. Wight) Germplasm in Korea. Korean Journal Crop Science 57(1) : 7-15 (In Korean). https://doi.org/10.7740/kjcs.2012.57.1.007.
  37. Zhao, Q., D. Hou, Y. Fu, Y. Xue, X. Guan, and Q. Shen. 2021. Adzuki Bean Alleviates Obesity and Insulin Resistance Induced by a High-Fat Diet and Modulates Gut Microbiota in Mice. Nutrients 13(9) : 3240. https://doi.org/10.3390/nu13093240.