DOI QR코드

DOI QR Code

Identification of Distinct Vaginal Microbiota Signatures Contributing Toward Preterm Birth Using an Integrative Computational Approach

  • Sudeepti Kulshreshtha (Amity Institute of Biotechnology, Amity University) ;
  • Priyanka Narad (Amity Institute of Biotechnology, Amity University) ;
  • Brojen Singh (School of Computational and Integrative Sciences, Jawaharlal Nehru University) ;
  • Deepak Modi (Department of Molecular and Cellular Biology, National Institute for Research in Reproductive Health and Child Health) ;
  • Abhishek Sengupta (Amity Institute of Biotechnology, Amity University)
  • Received : 2022.10.18
  • Accepted : 2023.01.18
  • Published : 2023.03.28

Abstract

Preterm birth (PTB) is defined as giving birth prior to the 37th week of pregnancy and is a major cause of infant mortality. Studies have indicated that the vaginal microbiota's composition and its dysbiosis, particularly during pregnancy, may play a major role in PTB. While previous research work concentrated on well-studied microorganisms such as Lactobacillus, Prevotella, Gardnerella, various other microbes, and their significance in the vaginal microbiota's stability remain unknown. Moreover, current studies have focused primarily on the relative abundances of the microbes found, without considering their interactions with other members of the vaginal microbiota. In this work, we developed a novel computational approach and performed taxonomic classification of vaginal microbiota samples stratified longitudinally (Term/PTB) to observe compositional disparities and find underexamined microbes that may be contributing to PTB. Furthermore, we carried out a correlational analysis to build a microbial co-interaction network and investigated the functional implications of the genes present in both Term and PTB samples. The co-occurrence network revealed that Lactobacillus acts in solidarity to maintain the stability of the vaginal microbiota and did not have strong co-interactions with any of the other microbes. Similarly, microbes with strong interactions with Atopobium, a well-known marker microbe of PTB, were also observed. Additionally, several genes such as PTXA, FANCM, GPX, and DUSP were found to be playing an important role in the occurrence of PTB. This study provides a novel conceptual framework revealing distinct vaginal microbiota signatures that could be potential therapeutic targets for the prevention of PTB.

Keywords

Acknowledgement

We would like to acknowledge Dr. Ashok K. Chauhan, Founder, and President, Amity University, Uttar Pradesh for providing us the opportunity to conduct research. We would also like to thank Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University for providing us with necessary resources.

References

  1. Fettweis J, Serrano M, Brooks J, Edwards D, Girerd P, Parikh H, et al. 2019. The vaginal microbiota and preterm birth. Nat. Med. 25: 1012-1021. https://doi.org/10.1038/s41591-019-0450-2
  2. Kumar S, Kumari N, Talukdar D, Kothidar A, Sarkar M, Mehta O, et al. 2021. The vaginal microbial signatures of preterm birth delivery in Indian women. Front. Cell. Infect. Microbiol. 11: 622474.
  3. Tabatabaei N, Eren A, Barreiro L, Yotova V, Dumaine A, Allard C, et al. 2018. Vaginal microbiota in early pregnancy and subsequent risk of spontaneous preterm birth: a case-control study. BJOG 126: 349-358. https://doi.org/10.1111/1471-0528.15299
  4. Amabebe E, Anumba D. 2018. The vaginal microenvironment: The physiologic role of Lactobacilli. Front. Med. 5: 181.
  5. Garcia-Velasco J, Menabrito M, Catalan I. 2017. What fertility specialists should know about the vaginal microbiota: a review. Reprod. BioMed. Online 35: 103-112. https://doi.org/10.1016/j.rbmo.2017.04.005
  6. Kindinger L, Bennett P, Lee Y, Marchesi J, Smith A, Cacciatore S, et al. 2017. The interaction between vaginal microbiota, cervical length, and vaginal progesterone treatment for preterm birth risk. Microbiome 5: 6.
  7. Ravel J, Gajer P, Abdo Z, Schneider G, Koenig S, McCulle S, et al. 2010. Vaginal microbiota of reproductive-age women. Proc. Natl. Acad. Sci. USA 108: 4680-4687. https://doi.org/10.1073/pnas.1002611107
  8. Odogwu N, Chen J, Onebunne C, Jeraldo P, Yang L, Johnson S, et al. 2021. Predominance of Atopobium vaginae at midtrimester: a potential indicator of preterm birth risk in a Nigerian cohort. mSphere 6: e01261-20.
  9. DiGiulio D, Callahan B, McMurdie P, Costello E, Lyell D, Robaczewska A, et al. 2015. Temporal and spatial variation of the human microbiota during pregnancy. Proc. Natl. Acad. Sci. USA 112: 11060-11065. https://doi.org/10.1073/pnas.1502875112
  10. Manuck T. 2017. Racial and ethnic differences in preterm birth: A complex, multifactorial problem. Semin. Perinatol. 41: 511-518. https://doi.org/10.1053/j.semperi.2017.08.010
  11. Fettweis J, Brooks J, Serrano M, Sheth N, Girerd P, Edwards D, Strauss J, et al. 2014. Differences in vaginal microbiota in African American women versus women of European ancestry. Microbiology 160: 2272-2282. https://doi.org/10.1099/mic.0.081034-0
  12. NCBI B. 2020. ID 600021 - Bioproject - NCBI. National Center for Biotechnology Information [Internet]. Available from: https://www.ncbi.nlm.nih.gov/bioproject/PRJNA600021
  13. Ubuntu 20.04.4 LTS released. Lists.ubuntu.com [Internet]. 2022. Available from: https://lists.ubuntu.com/archives/ubuntuannounce/2022-February/000277.html
  14. Jing G, Sun Z, Wang H, Gong Y, Huang S, Ning K, et al. 2017. Parallel-META 3: Comprehensive taxonomical and functional analysis platform for efficient comparison of microbial communities. Sci. Rep. 7: 40371.
  15. Estaki M, Jiang L, Bokulich N, McDonald D, Gonzalez A, Kosciolek T, et al. 2020. QIIME 2 enables comprehensive end-to-end analysis of diverse microbiome data and comparative studies with publicly available data. Curr. Protoc. Bioinformatics 70: e100.
  16. Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, et al. 2013. Predictive functional profiling of microbial communities using 16S rrna marker gene sequences. Nat. Biotechnol. 31: 814-821. https://doi.org/10.1038/nbt.2676
  17. McDonald D, Price M, Goodrich J, Nawrocki E, DeSantis T, Probst A, et al. 2011. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6: 610-618. https://doi.org/10.1038/ismej.2011.139
  18. Wickham H. 2011. ggplot2. Wiley Interdisciplinary Reviews: Computational Statistics 3: 180-185. https://doi.org/10.1002/wics.147
  19. Sun L, Dong S, Ge Y, Fonseca J, Robinson Z, Mysore K, et al. 2019. DiVenn: An interactive and integrated web-based visualization tool for comparing gene lists. Front. Genet. 10: 421.
  20. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. 2016. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45: D353-D361.
  21. Shannon P, Markiel A, Ozier O, Baliga N, Wang J, Ramage D, et al. 2003. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13: 2498-2504. https://doi.org/10.1101/gr.1239303
  22. Wang J, Zhong J, Chen G, Li M, Wu F-xiang, Pan Y. 2015. Clusterviz: A cytoscape app for cluster analysis of biological network. IEEE/ACM Trans. Comput. Biol. Bioinform. 12: 815-822. https://doi.org/10.1109/TCBB.2014.2361348
  23. yFiles Layout Algorithms for Cytoscape. In: Cytoscape App store - yfiles layout algorithms [Internet]. 2022. Available from: https://apps.cytoscape.org/apps/yfileslayoutalgorithms.
  24. Freitas A, Hill J. 2018. Bifidobacteria isolated from vaginal and gut microbiomes are indistinguishable by comparative genomics. PLoS One 13: e0196290.
  25. Kumar M, Murugesan S, Singh P, Saadaoui M, Elhag D, Terranegra A, et al. 2021. Vaginal microbiota and cytokine levels predict preterm delivery in Asian women. Front. Cell. Infect. Microbiol. 11: 639665.
  26. Dunlop A, Satten G, Hu Y, Knight A, Hill C, Wright M, et al. 2021. Vaginal microbiota composition in early pregnancy and risk of spontaneous preterm and early term birth among African American Women. Front. Cell. Infect. Microbiol. 11: 641005.
  27. Salmanov A, Ishchak O, Shostak Y, Kozachenko V, Rud V, Golyanovskiy O, Shkorbotun V. 2021. Bacterial infection causes of pregnancy loss and premature birth in the women In Ukraine. Wiad. Lek. 74: 1355-1359. https://doi.org/10.36740/WLek202106113
  28. Doyle R, Alber D, Jones H, Harris K, Fitzgerald F, Peebles D, et al. 2014. Term and preterm labour are associated with distinct microbial community structures in placental membranes which are independent of mode of delivery. Placenta 35: 1099-1101. https://doi.org/10.1016/j.placenta.2014.10.007
  29. Yu J, Peng T, Lu J, Li X, Hu R. 2021. Analysis of the microbiome based on 16S rRNA gene signature in women with preterm versus term birth. Reprod. Dev. Med. 5: 81-89. https://doi.org/10.4103/2096-2924.320887
  30. Freitas A, Dobbler P, Mai V, Procianoy R, Silveira R, Corso A, et al. 2019. Defining microbial biomarkers for risk of preterm labor. Braz. J. Microbiol. 51: 151-159. https://doi.org/10.1007/s42770-019-00118-x
  31. Kosti I, Lyalina S, Pollard K, Butte A, Sirota M. 2020. Meta-analysis of vaginal microbiota data provides new insights into preterm birth. Front. Microbiol. 11: 476.
  32. De Siena M, Laterza L, Matteo M, Mignini I, Schepis T, Rizzatti G, et al. 2021. Gut and reproductive tract microbiota adaptation during pregnancy: New insights for pregnancy-related complications and therapy. Microorganisms 9: 473.
  33. Celandroni F, Salvetti S, Gueye S, Mazzantini D, Lupetti A, Senesi S, et al. 2016. Identification and pathogenic potential of clinical Bacillus and Paenibacillus isolates. PLoS One 11: e0152831.
  34. Doster R, Kirk L, Tetz L, Rogers L, Aronoff D, Gaddy J. 2016. Staphylococcus aureus infection of human gestational membranes induces bacterial biofilm formation and host production of cytokines. J. Infect. Dis. 215: 653-657. https://doi.org/10.1093/infdis/jiw300
  35. Leclercq S, Sullivan M, Ipe D, Smith J, Cripps A, Ulett G. 2016. Pathogenesis of Streptococcus urinary tract infection depends on bacterial strain and β-hemolysin/cytolysin that mediates cytotoxicity, cytokine synthesis, inflammation and virulence. Sci. Rep. 6: 29000.
  36. Kim J, Park Y. 2018. Lactobacillus and urine microbiome in association with urinary tract infections and bacterial vaginosis. Urogenit. Tract Infect. 13: 7-13. https://doi.org/10.14777/uti.2018.13.1.7
  37. Ferris M, Masztal A, Aldridge K, Fortenberry J, Fidel P, Martin D. 2004. Association of Atopobium vaginae, a recently described metronidazole resistant anaerobe, with bacterial vaginosis. BMC Infect. Dis. 4: 5.
  38. Subramaniam A, Kumar R, Cliver S, Szychowski J, Abramovici A, Biggio J, et al. 2015. Vaginal microbiota in pregnancy: Evaluation based on vaginal flora, birth outcome, and face. Am. J. Perinatol. 33: 401-408. https://doi.org/10.1055/s-0035-1565919
  39. Pregnancy and Whooping Cough. 2022. Centers for disease control and prevention [Internet]. Available from: https://www.cdc.gov/pertussis/pregnant/.
  40. Giles M, Davey M, Wallace E. 2021. Associations between maternal immunisation and reduced rates of preterm birth and stillbirth: A population based retrospective cohort study. Front. Immunol. 12: 704254.
  41. Matar C, Bou-Fakhredin R, Russo R, Andolfo I, Iolascon A, Taher A. 2021. Recommendations for pregnancy in Fanconi anemia. Expert Opin. Biol. Ther. 21: 1403-14090. https://doi.org/10.1080/14712598.2021.1913119
  42. Moustafa S. 2001. Effect of Glutathione (GSH) Depletion on the serum levels of Triiodothyronine (T3), Thyroxine (T4), and T3/T4 ratio in allyl alcohol treated male rats and possible protection with Zinc. Int. J. Toxicol. 20: 15-20. https://doi.org/10.1080/109158101750103332
  43. Nourbakhsh M, Ahmadpour F, Chahardoli B, Malekpour-Dehkordi Z, Nourbakhsh M, Hosseini-Fard S, et al. 2016. Selenium and its relationship with selenoprotein P and glutathione peroxidase in children and adolescents with Hashimoto's thyroiditis and hypothyroidism. J. Trace Elem. Med. Biol. 34: 10-14. https://doi.org/10.1016/j.jtemb.2015.10.003
  44. Stagnaro-Green A. 2009. Maternal thyroid disease and preterm delivery. J. Clin. Endocrinol. Metab. 94: 21-25. https://doi.org/10.1210/jc.2008-1288
  45. Martin A, Faes C, Debevec T, Rytz C, Millet G, Pialoux V. 2018. Preterm birth and oxidative stress: Effects of acute physical exercise and hypoxia physiological responses. Redox Biol. 17: 315-322. https://doi.org/10.1016/j.redox.2018.04.022
  46. Rizos C. 2011. Effects of thyroid dysfunction on lipid profile. Open Cardiovasc. Med. J. 5: 76-84. https://doi.org/10.2174/1874192401105010076
  47. Torun A, Kulaksizoglu S, Kulaksizoglu M, Pamuk B, Isbilen E, Tutuncu N. 2009. Serum total antioxidant status and lipid peroxidation marker malondialdehyde levels in overt and subclinical hypothyroidism. Clin. Endocrinol. 70: 469-474. https://doi.org/10.1111/j.1365-2265.2008.03348.x
  48. Nasioudis D, Doulaveris G, Kanninen T. 2019. Dyslipidemia in pregnancy and maternal-fetal outcome. Minerva Ginecol. 71: 155-162. https://doi.org/10.23736/S0026-4784.18.04330-7
  49. Chang X, Yao Y, Wang D, Ma H, Gou P, Li C, et al. 2018. Influence of hypothyroidism on testicular mitochondrial oxidative stress by activating the p38 mitogen-activated protein kinase and c-Jun NH2-terminal kinase signaling pathways in rats. Hum. Exp. Toxicol. 38: 95-105. https://doi.org/10.1177/0960327118781927
  50. Perander M, Al-Mahdi R, Jensen T, Nunn J, Kildalsen H, Johansen B, et al. 2017. Regulation of atypical MAP kinases ERK3 and ERK4 by the phosphatase DUSP2. Sci. Rep. 7: 43471.
  51. Xie Y, Su N, Yang J, Tan Q, Huang S, Jin M, et al. 2020. FGF/FGFR signaling in health and disease. Signal Transduct. Target. Ther. 5: 181.
  52. Hirtz A, Rech F, Dubois-Pot-Schneider H, Dumond H. 2020. Astrocytoma: A hormone-sensitive tumor?. Int. J. Mol. Sci. 21: 9114.
  53. Improta-Brears T, Whorton A, Codazzi F, York J, Meyer T, McDonnell D. 1999. Estrogen-induced activation of mitogen-activated protein kinase requires mobilization of intracellular calcium. Proc. Natl. Acad. Sci. UAS 96: 4686-4691. https://doi.org/10.1073/pnas.96.8.4686
  54. Menon R, Papaconstantinou J. 2016. p38 Mitogen activated protein kinase (MAPK): a new therapeutic target for reducing the risk of adverse pregnancy outcomes. Expert Opin. Ther. Targets 20: 1397-1412. https://doi.org/10.1080/14728222.2016.1216980
  55. Yang A, Suh W, Kang N, Lee B, Chang Y. 2018. MAPK/ERK and JNK pathways regulate lipid synthesis and cell growth of Chlamydomonas reinhardtii under osmotic stress, respectively. Sci. Rep. 8: 13857.
  56. Ye J, Wang H, Chen Y, Yuan D, Zhang L, Liu L. 2015. MED12 mutation in patients with hysteromyoma. Oncol. Lett. 9: 2771-2774. https://doi.org/10.3892/ol.2015.3118
  57. Perez-Roncero G, Lopez-Baena M, Ornat L, Cuerva M, Garcia-Casarrubios P, Chedraui P, et al. 2020. Uterine fibroids and preterm birth risk: A systematic review and meta-analysis. J. Obstet. Gynaecol. Res. 46: 1711-1727. https://doi.org/10.1111/jog.14343
  58. Randis T, Gelber S, Hooven T, Abellar R, Akabas L, Lewis E, et al. 2014. Group B Streptococcus-hemolysin/cytolysin breaches maternal-fetal barriers to cause preterm birth and intrauterine fetal demise in vivo. J. Infect. Dis. 210: 265-273. https://doi.org/10.1093/infdis/jiu067
  59. Mendling W. 2016. Normal and abnormal vaginal microbiota. LaboratoriumsMedizin 40: 4.