DOI QR코드

DOI QR Code

Bioconversion of Rutin in Tartary Buckwheat by the Korean Indigenous Probiotics

한국형 프로바이오틱스에 의한 쓴메밀 내 rutin의 생물전환

  • 권창 ((주)쎌바이오텍 세포공학연구소) ;
  • 김종원 ((주)쎌바이오텍 세포공학연구소) ;
  • 박영광 ((주)쎌바이오텍 세포공학연구소) ;
  • 강승범 ((주)쎌바이오텍 세포공학연구소) ;
  • 정명준 ((주)쎌바이오텍 세포공학연구소) ;
  • 김수정 (농촌진흥청 국립식량과학원 고령지농업연구소) ;
  • 임상현 ((주)쎌바이오텍 세포공학연구소)
  • Received : 2023.02.21
  • Accepted : 2023.03.03
  • Published : 2023.03.28

Abstract

In this study, bioconversion of rutin to quercetin was confirmed by the fermentation of Korean indigenous probiotics and tartary buckwheat. Based on whole genome sequencing of 17 probiotics species, α-rhamnosidase, related to bioconversion of isoquercetin (quercetin 3-β-D glucoside) from rutin, is identified in the genome of CBT BG7, LC5, LR5, LP3, LA1, and LGA1. β-Glucosidase, related to bioconversion of isoquercetin to quercetin, is identified in the genome of all 17 species. Among the 17 probiotics species, 6 probiotics including CBT BG7, LR5, LP3, LA1, LGA1 and ST3 performed the bioconversion of rutin to quercetin up to 21.5 ± 0.3% at 7 days after fermentation. The fermentation of each probiotics together with enzyme complex Cellulase KN® was conducted to reduce the time of bioconversion. As a result, CBT LA1 which showed the highest yield of bioconversion of 21.5 ± 0.3% when the enzyme complex was not added showed high bioconversion yield of 84.6 ± 0.5% with adding the enzyme complex at 1 day after fermentation. In particular, CBT ST3 (96.2 ± 0.4%), SL6 (90.1 ± 1.4%) and LP3 (90.0 ± 0.4%) showed high yield of bioconversion more than 90%. In addition, such probiotics including high levels in quercetin indicated the inhibitory effects of NO production in LPS-induced RAW264.7 cells. In this study, we confirmed that the fermentation of Korean indigenous probiotics and enzyme complex together with roasted tartary buckwheat increased the content of quercetin and reduced the time of bioconversion of rutin to quercetin which is a bioactive compound related to anti-inflammatory, antioxidants, anti-obesity, and anti-diabetes.

본 연구에서는 한국형 프로바이오틱스와 볶은 쓴메밀을 배양하여 쓴메밀의 대표 성분인 rutin에서 quercetin으로 생물전환을 확인하였다. 프로바이오틱스 17종의 유전체 분석 결과 CBT BG7, LC5, LR5, LP3, LA1과 LGA1 등 6종에서 rutin에서 isoquercetin 전환에 관련된 α-rhamnosidase 유전자가 확인되었다. Isoquercetin에서 quercetin 전환에 관련된 β-glucosidase 유전자는 17종의 프로바이오틱스에서 모두 확인되었다. 17종의 프로바이오틱스 중 CBT BG7, LR5, LP3, LA1, LGA1과 ST3 등 6종의 균주가 배양 7일 후 rutin에서 quercetin으로 최대 21.5 ± 0.3%까지 생물전환 하였다. 생물전환 시간 단축을 위하여 프로바이오틱스와 복합 효소 Cellulase KN®을 함께 배양하였다. 그 결과, 효소 첨가 없이 가장 높은 생물전환율 21.5 ± 0.3%를 보였던 CBT LA1 균주는 효소와 함께 배양 1일 후 84.6 ± 0.5%의 생물전환율을 보였다. 특히 CBT ST3 (96.2 ± 0.4%), SL6 (90.1 ± 1.4%) 그리고 LP3 (90.0 ± 0.4%) 균주는 quercetin으로 90% 이상의 높은 전환율을 보였다. 추가로 프로바이오틱스 생물전환능이 우수하여 quercetin 함량이 높은 배양여액 동결건조물은 RAW264.7 세포에서 LPS에 의해 유도된 NO 생성 억제 효과를 보였다. 본 연구를 통해 한국형 프로바이오틱스와 효소를 조합하여 볶은 쓴메밀과 함께 배양하였을 때 rutin으로부터 항염증, 항산화, 항비만, 항당뇨 활성을 가지는 생리활성 물질 quercetin으로 생물전환이 증가하고 전환 시간이 단축됨을 확인하였다.

Keywords

Acknowledgement

This study was supported by joint research project from Rural Development Administration, Republic of Korea (Project number PJ016068).

References

  1. Kim SJ, Sohn HB, Suh JT, Kim GH, Hong SY, Kim KD, et al. 2017a. Domestic and overseas status of buckwheat production and future trends. J. Korean Soc. Int. Agr. 29: 226-233. https://doi.org/10.12719/KSIA.2017.29.3.226
  2. Kim SJ, Sohn HB, Hong SY, Lee JN, Kim KD, Suh JT, et al. 2020. Construction of data system on seed morphological traits and functional component in tartary buckwheat germplasms. Korean J. Plant Res. 33: 446-459.
  3. Kim SJ, Kim YH. Agricultural guide Buckwheat. 2018. Rural Development Administration, Jeonju, Korea. pp. 07-90.
  4. Park CH. 2006. Development of new cultivar and technology of cultivation and utilization in tartary buckwheat as a new agricultural material. pp. 12-197. Ministry of Agriculture.
  5. Ikeda K. 2002. Buckwheat composition, chemistry, and processing. Adv. Food Nutr. Res. 44: 395-434. https://doi.org/10.1016/S1043-4526(02)44008-9
  6. Kang HW. 2014. Antioxidant and anti-inflammation effects of water extract from buckwheat. Korean J. Culinary Res. 20: 190-199. https://doi.org/10.20878/cshr.2014.20.6.016016016
  7. Kim SH, Lee EY, Ham SS. 2007. Antioxidation and antigenotoxic effects of buckwheat sprout extracts. J. Korean Soc. Food Sci. Nutr. 36: 955-959. https://doi.org/10.3746/jkfn.2007.36.8.955
  8. Lee CC, Hsu WH, Shen SR, Cheng YH, Wu SC. 2012. Fagopyrum tataricum (buckwheat) improved high-glucose-induced insulin resistance in mouse hepatocytes and diabetes in fructose-rich diet induced mice. Exp. Diabetes Res. 2012: 375673.
  9. Kim DW, Hwang IK, Lim SS, Yoo KY, Li H, Kim YS, et al. 2009. Germinated buckwheat extract decreases blood pressure and nitrotyrosine immunoreactivity in aortic endothelial cells in spontaneously hypertensive rats. Phytother. Res. 23: 993-998. https://doi.org/10.1002/ptr.2739
  10. Chang KJ, Seo GS, Kim YS, Huang DS, Park JI, Park JJ, et al. 2010. Components and biological effects of fermented extract from tartary buckwheat sprouts. Korean J. Plant Res. 23: 131-137.
  11. Yoon BR, Cho BJ, Lee HK, Kim DJ, Rhee SK, Hong HD, et al. 2012. Antioxidant and anti-adipogenic effects of ethanolic extracts from tartary and common buckwheats. Korean J. Food Preserv. 19: 123-130. https://doi.org/10.11002/kjfp.2012.19.1.123
  12. Nam HK, Hong SH, Shin KC, Oh DK. 2012. Quercetin production from rutin by a thermostable β-rutinosidase from Pyrococcus furiosus. Biotechnol. Lett. 34: 483-489. https://doi.org/10.1007/s10529-011-0786-2
  13. Kim JA. 2006. Study on the anti-obesity effects of germinatedbuckwheat. Ms theses, Kangwon National University, Chuncheon, Korea.
  14. Fukushima T, Tokuji Y, Kinoshita M, Ohnishi M, Kawahara M, Ohba K. 2008. Anti-inflammatory effect of buckwheat sprouts in lipopolysaccharide-activated human colon cancer cells and mice. Biosci. Biotechol. Biochem. 72: 3148-3157. https://doi.org/10.1271/bbb.80324
  15. Holasova M, Fiedlerava V, Smrcinova H, Orsak M, Lachman J, Vavreinova S. 2002. Buckwheat-the source of antioxidant activity in functional foods. Food Res. Int. 35: 207-211. https://doi.org/10.1016/S0963-9969(01)00185-5
  16. Kim SJ, Sohn HB, Lee KT, Shin JS, Kim S, Nam JH, et al. 2019. Anti-inflammatory effects of seed ethanolic extracts of the common buckwheat and tartary buckwheat are mediated through the suppression of inducible nitric oxide synthase and pro-inflammatory cytokines in LPS-induced RAW 264.7 macrophage cells. Korean J. Food Sci. Technol. 51: 565-575.
  17. Erlund I. 2004. Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability and epidemiology. Nutr. Res. 24: 851-874. https://doi.org/10.1016/j.nutres.2004.07.005
  18. Zhang ZL, Zhou ML, Tang Y, Li FL, Tang YX, Shao JR. et al. 2012. Bioactive compounds in functional buckwheat food. Food Res. Int. 49: 389-395. https://doi.org/10.1016/j.foodres.2012.07.035
  19. Kim JH, Lee S, Cho EJ, Kim HY. 2019. Neuroprotective effects of kaempferol, quercetin, and its glycosides by regulation of apoptosis. J. Korea Acad. Ind. Coop. Soc. 20: 286-293.
  20. Heim KE, Tagliaferro AR, Bobilya DJ. 2002. Flavonoid antioxidants: Chemistry, metabolism and structureactivity relationships. J. Nutr. Biochem. 13: 572-584. https://doi.org/10.1016/S0955-2863(02)00208-5
  21. Ademosun AO, Oboh G, Bello F, Ayeni PO. 2015. Antioxidative properties and effect of quercetin and its glycosylated form (Rutin) on acetylcholinesterase and butyrylcholinesterase activities. J. Evid. Based Complementary Altern. Med 21: NP11-7. https://doi.org/10.1177/2156587215610032
  22. Yang J, Lee H, Sung J, Kim Y, Jeong HS, Lee J. 2019. Conversion of rutin to quercetin by acid treatment in relation to biological activities. Prev. Nutr. Food Sci. 24: 313-320. https://doi.org/10.3746/pnf.2019.24.3.313
  23. Kim GN, Kwon YI, Jang HD. 2011. Protective mechanism of quercetin and rutin on 2,2'-azobis(2-amidinopropane) dihydrochloride or Cu2+-induced oxidative stress in HepG2 cells. Toxicol. in Vitro 25: 138-144. https://doi.org/10.1016/j.tiv.2010.10.005
  24. Salehi B, Machin L, Monzote L, Sharifi-Rad J, Ezzat SM, Sale MA, et al. 2020. Therapeutic potential of quercetin: New insights and perspectives for human health. ACS Omega 5: 11849-11872. https://doi.org/10.1021/acsomega.0c01818
  25. Zuo Y, Xin X, Xu H, Yuan H, Li X, Yu Y, et al. 2020. Highly efficient bioconversion of flavonoid glycosides from citrus processing wastes in solvent-buffer systems. Green Chem. 22: 3196-3207. https://doi.org/10.1039/D0GC00669F
  26. Dewi RT, Ekapratiwi Y, Sundowo A, Ariani N, Yolanda T, Filaila E. 2019. Bioconversion of quercetin glucosides from Dendrophthoe pentandra leaf using Aspergillus acueletus LS04-3. AIP Conference Proceedings 2175: 020048.
  27. Huynh NT, Smagghe G, Gonzales GB, Camp JV, Raes K. 2018. Bioconversion of kaempferol and quercetin glucosides from plant sources using Rhizopus spp. Fermentation 4: 1-9. https://doi.org/10.3390/fermentation4010001
  28. Amaretti A, Raimondi S, Leonardi A, Quartieri A, Rossi M. 2015. Hydrolysis of the rutinose-conjugates flavonoids rutin and hesperidin by the gut microbiota and bifidobacteria. Nutrients 7: 2788-2800. https://doi.org/10.3390/nu7042788
  29. Choi J, Kwon C, Kim JW, Chung MJ, Yoon JH, Lim S. 2022. Bioconversion of Ginsenosides by Bifidobacterium CBT BG7, BR3 and BL3. Microbiol. Biotechnol. Lett. 50: 395-403. https://doi.org/10.48022/mbl.2208.08005
  30. Kim SJ, Sohn HB, Nam JH, Lee JN, Chang DC, Kim YH. 2022. Comparison of rutin content and quality characteristics of tea products from common buckwheat (Fagopyrum esculentum) and tartary buckwheat (Fagopyrum tataricum) by different processing and brewing methods. Korean J. Food Sci. Technol. 54: 185-195.
  31. Park CM, Kim GM, Cha GS. 2021. Biotransformation of flavonoids by newly isolated and characterized Lactobacillus pentosus NGI01 strain from Kimchi. Microorganisms 9: 1075.
  32. Mueller M, Zartl B, Schleritzko A, Stenzl M, Viernstein H, Unger FM. 2018. Rhamnosidase activity of selected probiotics and their ability to hydrolyse flavonoid rhamnoglucosides, Bioprocess Biosyst. Eng. 41: 221-228.  https://doi.org/10.1007/s00449-017-1860-5